线性基模板

 

性质
1.设线性基的异或集合中不存在0。 
2.线性基的异或集合中每个元素的异或方案唯一,其实这个跟性质1是等价的。 
3.线性基二进制最高位互不相同。 
4.如果线性基是满的,它的异或集合为[1,2^n-1]
5.线性基中元素互相异或,异或集合不变。

 

插入


如果向线性基中插入数x,从高位到低位扫描它为1的二进制位。 
扫描到第i时,如果a_i不存在,就令a_i=x ,否则x=x⊗a_i。 
x的结果是,要么被扔进线性基,要么经过一系列操作过后,变成了0。

bool insert(long long val)
{
    for (int i=60;i>=0;i--)
        if (val&(1LL<<i))
        {
            if (!a[i])
            {
                a[i]=val;
                break;
            }
            val^=a[i];
        }
    return val>0;
}

 
合并


将一个线性基暴力插入另一个线性基即可。

Node merge(const Node &n1,const Node &n2)
{
    Node ret=n1;
    for (int i=0;i<=60;i++)
        if (n2.d[i])
            ret.insert(n2.d[i]);
    return ret;
}


 
查询


如果要查询x是否存于异或集合中。 
从高位到低位扫描x的为1的二进制位。 
扫描到第ii位的时候x=x⊗a_i
如果中途x变为了0,那么表示x存于线性基的异或集合中。

最大值
从高位到低位扫描线性基。 
如果异或后可以使得答案变大,就异或到答案中去。

long long query_max()
{
    long long ret=0;
    for (int i=60;i>=0;i--)
        if ((ret^d[i])>ret)
            ret^=d[i];
    return ret;
}


 
最小值
最小值即为最低位上的线性基。

long long query_min()
{
    for (int i=0;i<=60;i++)
        if (d[i])
            return d[i];
    return 0;
}


 
k小值
根据性质3。 
我们要将线性基改造成每一位相互独立。 
具体操作就是如果i<j,a_j的第i位是1,就将a_j异或上a_i。 
经过一系列操作之后,对于二进制的某一位i。只有a_i的这一位是1,其他都是0。 
所以查询的时候将k二进制拆分,对于1的位,就异或上对应的线性基。 
最终得出的答案就是k小值。

void rebuild()
{
    for (int i=60;i>=0;i--)
        for (int j=i-1;j>=0;j--)
            if (d[i]&(1LL<<j))
                d[i]^=d[j];
    for (int i=0;i<=60;i++)
        if (d[i])
            p[cnt++]=d[i];
}
long long kthquery(long long k)
{
    int ret=0;
    if (k>=(1LL<<cnt))
        return -1;
    for (int i=60;i>=0;i--)
        if (k&(1LL<<i))
            ret^=p[i];
    return ret;
}


 
模板


 

struct Node{
    long long d[61],p[61];
    int cnt;
    Node()
    {
        memset(d,0,sizeof(d));
        memset(p,0,sizeof(p));
        cnt=0;
    }
    bool insert(long long val)
    {
        for (int i=60;i>=0;i--)
            if (val&(1LL<<i))
            {
                if (!d[i])
                {
                    d[i]=val;
                    break;
                }
                val^=d[i];
            }
        return val>0;
    }
    long long query_max()
    {
        long long ret=0;
        for (int i=60;i>=0;i--)
            if ((ret^d[i])>ret)
                ret^=d[i];
        return ret;
    }
    long long query_min()
    {
        for (int i=0;i<=60;i++)
            if (d[i])
                return d[i];
        return 0;
    }
    void rebuild()
    {
        for (int i=60;i>=0;i--)
            for (int j=i-1;j>=0;j--)
                if (d[i]&(1LL<<j))
                    d[i]^=d[j];
        for (int i=0;i<=60;i++)
            if (d[i])
                p[cnt++]=d[i];
    }
    long long k_thquery(long long k)
    {
        int ret=0;
        if (k>=(1LL<<cnt))
            return -1;
        for (int i=60;i>=0;i--)
            if (k&(1LL<<i))
                ret^=p[i];
        return ret;
    }
}
Node merge(const Node &n1,const Node &n2)
{
    Node ret=n1;
    for (int i=60;i>=0;i--)
        if (n2.d[i])
            ret.insert(n1.d[i]);
    return ret;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值