性质
1.设线性基的异或集合中不存在0。
2.线性基的异或集合中每个元素的异或方案唯一,其实这个跟性质1是等价的。
3.线性基二进制最高位互不相同。
4.如果线性基是满的,它的异或集合为
5.线性基中元素互相异或,异或集合不变。
插入
如果向线性基中插入数x,从高位到低位扫描它为1的二进制位。
扫描到第i时,如果不存在,就令=x ,否则x=x⊗。
x的结果是,要么被扔进线性基,要么经过一系列操作过后,变成了0。
bool insert(long long val)
{
for (int i=60;i>=0;i--)
if (val&(1LL<<i))
{
if (!a[i])
{
a[i]=val;
break;
}
val^=a[i];
}
return val>0;
}
合并
将一个线性基暴力插入另一个线性基即可。
Node merge(const Node &n1,const Node &n2)
{
Node ret=n1;
for (int i=0;i<=60;i++)
if (n2.d[i])
ret.insert(n2.d[i]);
return ret;
}
查询
如果要查询x是否存于异或集合中。
从高位到低位扫描x的为1的二进制位。
扫描到第ii位的时候x=x⊗
如果中途x变为了0,那么表示x存于线性基的异或集合中。
最大值
从高位到低位扫描线性基。
如果异或后可以使得答案变大,就异或到答案中去。
long long query_max()
{
long long ret=0;
for (int i=60;i>=0;i--)
if ((ret^d[i])>ret)
ret^=d[i];
return ret;
}
最小值
最小值即为最低位上的线性基。
long long query_min()
{
for (int i=0;i<=60;i++)
if (d[i])
return d[i];
return 0;
}
k小值
根据性质3。
我们要将线性基改造成每一位相互独立。
具体操作就是如果i<j,的第i位是1,就将异或上。
经过一系列操作之后,对于二进制的某一位i。只有的这一位是1,其他都是0。
所以查询的时候将k二进制拆分,对于1的位,就异或上对应的线性基。
最终得出的答案就是k小值。
void rebuild()
{
for (int i=60;i>=0;i--)
for (int j=i-1;j>=0;j--)
if (d[i]&(1LL<<j))
d[i]^=d[j];
for (int i=0;i<=60;i++)
if (d[i])
p[cnt++]=d[i];
}
long long kthquery(long long k)
{
int ret=0;
if (k>=(1LL<<cnt))
return -1;
for (int i=60;i>=0;i--)
if (k&(1LL<<i))
ret^=p[i];
return ret;
}
模板
struct Node{
long long d[61],p[61];
int cnt;
Node()
{
memset(d,0,sizeof(d));
memset(p,0,sizeof(p));
cnt=0;
}
bool insert(long long val)
{
for (int i=60;i>=0;i--)
if (val&(1LL<<i))
{
if (!d[i])
{
d[i]=val;
break;
}
val^=d[i];
}
return val>0;
}
long long query_max()
{
long long ret=0;
for (int i=60;i>=0;i--)
if ((ret^d[i])>ret)
ret^=d[i];
return ret;
}
long long query_min()
{
for (int i=0;i<=60;i++)
if (d[i])
return d[i];
return 0;
}
void rebuild()
{
for (int i=60;i>=0;i--)
for (int j=i-1;j>=0;j--)
if (d[i]&(1LL<<j))
d[i]^=d[j];
for (int i=0;i<=60;i++)
if (d[i])
p[cnt++]=d[i];
}
long long k_thquery(long long k)
{
int ret=0;
if (k>=(1LL<<cnt))
return -1;
for (int i=60;i>=0;i--)
if (k&(1LL<<i))
ret^=p[i];
return ret;
}
}
Node merge(const Node &n1,const Node &n2)
{
Node ret=n1;
for (int i=60;i>=0;i--)
if (n2.d[i])
ret.insert(n1.d[i]);
return ret;
}