1169E. And Reachability(DP+思路)

该博客详细介绍了如何使用位运算和动态规划(DP)来解决1169E问题。博主首先提供了题目链接,然后解释了思路,强调了按位考虑问题的重要性。他们定义了go[i][j]表示数字i能到达j位置为1的最小下标,并通过倒序遍历进行递推。接着,博主展示了如何更新状态并处理特殊情况。最后,博主给出了判断解存在的条件和代码实现,实现了问题的求解方法。
摘要由CSDN通过智能技术生成

1169E. And Reachability(DP+思路)

题目链接:传送门

思路:

涉及到位运算,很容易想到按位考虑。

我们用 g o [ i ] [ j ] go[i][j] go[i][j]表示第 i i i 个数可以到达第 j j j 位为1的最小下标是多少,如果没有则等于 n + 1 n+1 n+1

对于这个状态方程,我们倒过来递推,我们让 i i i n n n 开始遍历到 1 1 1 ,并用 l a s t [ k ] last[k] last[k] 表示满足 j > i j>i j>i a j a_j aj 的第 k k k 位为 1 1 1 的最小 j j j ,初始化为 n + 1 n+1 n+1

假设当前为 i i i,考虑 第 j j j

  • 如果 a i a_i ai 的第 j j j 位为1,那么 g o [ i ] [ j ] = i go[i][j]=i go[i][j]=i
  • 否则遍历 a i a_i ai 所有位数为 1 的位,假设为 k k k ,那么 g o [ i ] [ j ] = m i n ( g [ i ] [ j ] , g [ l a s t [ k ] ] [ j ] ) go[i][j]=min(g[i][j],g[last[k]][j]) go[i][j]=min(g[i][j],g[last[k]][j])
  • 随后更新 l a s t [ ] last[] last[]

那么对于每次查询 x , y x,y x,y ,我们枚举 a y a_y ay 位数为 1 1 1 的位, 假设为 k k k,判断是否存在 k k k 使得 g o [ x ] [ k ] ≤ y go[x][k]\le y go[x][k]y 即可。

(很容易想到如果满足则必有解,且如果有解,必有上述表达式满足,即两问题等效)

代码:

#include<bits/stdc++.h>
#define mset(a,b) memset(a,b,sizeof(a))
using namespace std;
const int N=3e5+10;
const int M=19;
int g[N][M],a[N],last[N];
int main()
{
    int n,q;
    scanf("%d%d",&n,&q);
    for(int i=1; i<=n; ++i) scanf("%d",a+i);
    for(int i=0; i<M; ++i) {
        last[i]=n+1;
        g[n+1][i]=n+1;
    }
    for(int i=n; i>=1; --i)
    {
        for(int j=0; j<M; ++j)
        {
            if((a[i]>>j)&1)
                g[i][j]=i;
            else
            {
                g[i][j]=n+1;
                for(int k=0; k<M; ++k)
                {
                    if((a[i]>>k)&1)
                        g[i][j]=min(g[i][j],g[last[k]][j]);
                }
            }
        }
        for(int j=0; j<M; ++j)
            if((a[i]>>j)&1)
                last[j]=i;
    }
    for(int o=0; o<q; ++o)
    {
        int x,y;
        scanf("%d%d",&x,&y);
        bool isok=false;
        for(int i=0; i<M; ++i)
            if((a[y]>>i)&1)
                isok|=(g[x][i]<=y);
        printf("%s\n",isok?"Shi":"Fou");
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值