第三章 集合的基本概念和运算 3.2集合的基本运算

本文深入讲解集合的基本运算,包括并集、交集、相对补集和绝对补集的概念及运算定律。通过命题演算法和恒等变形法,详细解析集合运算的证明方法,并提供反证法的实例,帮助读者掌握集合运算的全面知识。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

3.2集合的基本运算

本节我们讲集合的并( ⋃ \bigcup ), 交( ⋂ \bigcap ), 相对补( − - ), 绝对补( ⨁ \bigoplus )。交和并大家已经很熟悉了,直接来看他们的运算定律吧。
1
证明这些可以用命题演算法证明,例如:
2
命题演算法挺常用的,考试可能会考证明题。

来看相对补(差运算)
3
绝对补(补运算)
4
定律:
5
证明题:
命题演算法:
6
恒等变形法:
7
对称差:
8
由定义可知:
9
下边我们来证明
10
11
这里我们运用了集合恒等式的方法。

对称差的相关定律:
12
13
练习:
14
15
证明方法总结:

  • 命题演算法
  • 恒等变形法
  • 反证法

我们来到反证法的例题:
证明 A A A ⨁ \bigoplus B B B = = = A A A    ⟹    \implies B B B = = =

假设 B B B ≠ \not= = ∅ , 则存在 x x x ∈ \in B B B .
<1>若 x x x ∈ \in A A A,则 x x x ∉ \notin / A A A ⨁ \bigoplus B B B.这显然不符合 A A A ⨁ \bigoplus B B B = = = A A A
<2> 若 x x x ∉ \notin / A A A,则 x x x ∈ \in A A A ⨁ \bigoplus B B B.这显然也不符合 A A A ⨁ \bigoplus B B B = = = A A A

练习:
16

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值