5.3 图的矩阵表示
本节讨论图的关联矩阵,邻接矩阵,可达矩阵。
无向图的关联矩阵
这里的关联是指点与边之间的关联。如图:
这个无向图的关联矩阵为:
- 矩阵的每一行代表一个点与各边之间的关系。所以第 i i i行元素之和为 v i v_i vi的度数。
- 每一列代表一条边与各点之间的关系。所以每一列恰好有两个1(一条边的两个端点)或者一个2(环)。
- 矩阵中各元素之和等于 2 m 2m 2m(边条数的2倍)。
有向图的关联矩阵
还是点与边之间的关联。当点是边的起点时,记为1。当点是边的终点时,记为-1。不关联记为0。
这个有向图的关联矩阵为:
- 每一行代表一个点,1的个数表示其出度,-1的个数代表其入度。
- 每一列代表一个边,所以恰好有一个1和-1。
有向图的邻接矩阵
其表示点与点之间的邻接(通过一条边就可相连)。如图:
- 第 i i i行的元素和等于 v i v_i vi的出度。
- 第 j j j列的元素和等于 v j v_j vj的入度。
- 因为这是有向图的邻接矩阵,每条边只沿其方向计算一次。所以矩阵里各元素和等于 m m m(边数)
A
1
A^1
A1表示长度为1的通路条数,
A
2
A^2
A2表示长度为2的通路条数……以此类推。
eg:
A
3
A^3
A3中第一行第二列的2就表示:
v
1
v_1
v1到
v
2
v_2
v2有长度为3的两条通路。
有向图的可达矩阵
这里的可达是指两点之间的可达。沿有向图只要可达就记做1,不可达记做0。如图:
这个有向图的可达矩阵为:
- 因为任何顶点到自身都是可达的,所以可达矩阵主对角线上的元素恒为1。
练习1:
练习2:
练习3:
练习4:
(1) D是哪类连通图?
答:D中存在经过所有顶点的通路,但无经过所有顶点的回路,因而它是单向连通的,但不是强连通的.
(2) D中长度为1、2、3、4的通路各有多少条? 其中有多少条回路?