1.5 条件概率
条件概率
用图形来理解P(A|B)求的就是A和B的交集所占B的比例。
条件概率的性质:
例:
解:
解析:
- 从左往右是我们先心里想好在这种条件下是什么情况,再去求解。遇到简单的一般用这种方法。
- 从右往左是用定义里的公式去做。
练1:
练2:
练3:
易错题:
解析:
这个不能想当然的写成
1
3
\frac{1}{3}
31.因为条件是“其中有一件是不合格”而不是“第一件是不合格的”。这里只要至少有一件是不合格的ok了。正确解法如下:
乘法定理
两个事件的标准形式:
一般形式:
这个一般形式很少有,但是当
n
=
3
n = 3
n=3时用的比较多。如下:
P ( A B C ) = P ( A ) ⋅ P ( B ∣ A ) ⋅ P ( C ∣ A B ) P(ABC) = P(A)· P(B|A)· P(C|AB) P(ABC)=P(A)⋅P(B∣A)⋅P(C∣AB)
宋老师讲的理解办法挺好的:
- 先走一步A
- 在A的基础上再走一步B
- 在走过了AB的基础上再走最后一步C
例1:
例2:
辨析
P
(
A
B
)
P(AB)
P(AB) 与
P
(
A
∣
B
)
P(A|B)
P(A∣B):
全概率公式
定义:
其实就是把每一个小部分的概率求加和就是要求的整体的概率。
A
A
A在
B
1
B_1
B1上的概率是:
P
(
A
B
1
)
P( A B_1)
P(AB1) =
P
(
A
∣
B
1
)
P( A |B_1)
P(A∣B1) ·
P
(
B
1
)
P( B_1)
P(B1)
……
依次类推,A的4个小部分的加和就是A整体的概率。
例:
贝叶斯公式
- 贝叶斯公式的分母是全概率公式
- 贝叶斯公式的分子是全概率公式中的一个部分,也可以用乘法公式来改变形态。
- 贝叶斯公式算出来的概率是某个小部分占整体的比重。可以用来分析哪个小部分对整体的影响最大。
- 贝叶斯公式是全概率公式的逆过程。全概率公式是由部分去求整体,贝叶斯公式是由整体去逆推各部分的影响。
例:
假设某种新型冠状病毒的发病率是
0.0004
0.0004
0.0004,现在有一种检测方法对患有此病的人检测成功率为99%,对于没有患病的人有0.1%的误诊率。求下列两件事情发生的概率:
<1> 若检测结果为阳性(患病),但是却没有感染的概率是多少?
<2>若检测结果为阴性(未患病),但是却被感染的概率是多少?
到这里笔者就要感慨一番了,我们把两个共识作为条件:
<1>大多数事物都是正态分布的,即越靠近两个极端概率越小。(本题体现为0.0004)
<2>误差总是存在的,不可能达到完美的100%状态。(本题体现为99%和99.9%)
在计算的过程中我们发现这0.0004的极端黑暗抑制了99%的绝望,催生了0.1%的希望。原来走入0.0004的极端黑暗会看见71.6%的光明。这看似对立的两个极端以一种奇妙的方式相互关联着,这便是我们常说的物极必反,否极泰来,乐极生悲,看似彼此相离却又终生相依……
果然,科学的尽头是玄学。
练1:
这道题题干也可以换成抽红包抽最佳,无论第几个抽每个人抽到最佳的概率都是
1
n
\frac{1}{n}
n1。由此可见,抽签是很公平的。
练2: