ACM算法模板 线性筛与欧拉函数(欧拉筛)

线性筛

我们可以用线性筛去求质数(素数)

首先来一个根据定义的笨方法,就是写循环一个一个去判断 n n n 能不能被1~ n \sqrt{n} n 中的数整除。时间复杂度为O(n n \sqrt{n} n ),代码如下:

#include <stdio.h>
#include <cmath>
#include <assert.h> //限制非法的函数调用

int isprime (int x)
{
    int i,m;
    assert(x>=0); //强制x符合要求才执行程序
    if (x==1||x==0)//0与1都不是质数
        return 0;
    m=floor((sqrt(x)+0.5)); //返回一个小于传入参数的最大整数,加0.5是模拟四舍五入的过程
    for (i=2; i<=m; i++)
    {
        if (x%i==0) return 0;
        return 1;
    }
}

int main ()
{
    int i,n;
    while (~scanf("%d",&n))
    {
        if (isprime(n))
            printf( "Yes\n");
        else printf("No\n");
    }
    return 0;
}

线性筛则避免了重复的判断,时间复杂度为O(n)。
下面为代码,
输入一个上限n
输出1 ~ n 之间质数的个数

#include <iostream>
#include <string.h>
using namespace std;
//筛选1~n中所有的素数,保存到prime数组中,cnt为素数的个数
//vis数组标记是否为素数,0表示是素数,1表示不是素数

int Make_Prime(int n)  //时间复杂度O(n)
{
    int cnt = 0;
    int vis[10000];//根据情况自己开数组
    int prime[10000];
    memset(vis, 0, sizeof(vis));
    for (int i = 2; i <= n; i ++)
    {
        if (!vis[i])
            prime[cnt++] = i;
        for (int j = 0; j < cnt && i * prime[j] <=n; j ++)
        {
            vis[i * prime[j]] = 1;
            if (i % prime[j] == 0)     //关键
                break;
        }
    }
    return cnt;
}

int main()
{
    int n;
    while(cin >> n)
    {
        cout<<Make_Prime(n)<<endl;
    }

    return 0;
}

将上述模板稍加修改即可判断质数
输入:n 代表建立1 ~ n 的质数表,之后输入m表示要判断的数字个数。
输出:是质数则为Yes ,不是质数为No

#include<iostream>
#include<cstdio>
#include<cstring>

using namespace std;

const int N=10000050;

int n,m;
int pri[N];
//0代表不是质数,1代表是质数 

void prepare(int n)
{
    memset(pri,1,sizeof(pri));
    pri[1]=0;//1不是质数 
    for(int i=2;i<=n;i++) 
    {
        if(pri[i])//如果i是质数 
        {
            for(int j=2;j<=n/i;j++)
                pri[i*j]=0;//用i取标记合数 
        }
    }
}

int main()
{
    scanf("%d%d",&n,&m);
    prepare(n);
    for(int i=1;i<=m;i++)
    {
        int x;
        scanf("%d",&x);
        if(pri[x]) puts("Yes");
        else puts("No");
    }

    return 0;
}

欧拉函数

欧拉函数是求小于n的数中与n互质数字的个数。公式如下:

φ ( n ) = n ∗ ( 1 − 1 p 1 ) ∗ ( 1 − 1 p 2 ) ∗ ( 1 − 1 p 3 ) ⋯ ∗ ( 1 − 1 p i ) \varphi (n) = n*(1- \frac{1}{p1} \quad)*(1- \frac{1}{p2} \quad)*(1- \frac{1}{p3} \quad)\cdots *(1- \frac{1}{pi}) φn=n(1p11)(1p21)(1p31)(1pi1)

其中 p i pi pi为n的质因数,对于n的一个质因数pi,因为n以内pi的倍数是均匀分布的,所以x以内有1/pi的数是pi的倍数,有 ( 1 − 1 p i ) (1- \frac{1}{pi} \quad) (1pi1)的数不是pi的倍数。对于pj,有1-1/pj的数不是pj的倍数,所以有 ( 1 − 1 p i ) (1- \frac{1}{pi} \quad) (1pi1)* ( 1 − 1 p j ) (1- \frac{1}{pj} \quad) (1pj1)的数既不是pi的倍数,也不是pj的倍数

eg: 求单个欧拉函数
输入:一个数,若输入为0则结束
输出:输出其欧拉函数的值

#include <cstdio>
int Eular(int n)  //求单个数的欧拉函数
{
	int ans = n;
	for (int i = 2 ; i * i <= n ; i++)
	{
		if (n % i == 0)
		{
			ans =ans - ans / i;
			while (n % i == 0)
				n =n/i;  //消除i因子
		}
	}
	if (n > 1)		//n本身也是个质因子
		ans =ans -ans / n;
	return ans;
}
int main()
{
	int n;
	while (~scanf ("%d",&n) && n)
	{
		if (n == 1)
			printf ("0\n");
		else
			printf ("%d\n",Eular(n));
	}
	return 0;
}


欧拉筛:

#include <iostream>
#include <stdio.h>
#include <string.h>
#define ll long long
using namespace std;
const int MAXN=100001;
int prime[MAXN+1];
int phi[MAXN+1];
void phi_prime()
{
    memset(prime,0,sizeof(prime));
    phi[1] = 1;
    for(int i=2; i<=MAXN; i++)
    {
        if(!prime[i])
        {
            prime[++prime[0]] = i;
            phi[i] = i-1;//i为素数,小于i与i互质的数有i-1个
        }

        for(int j=1; j<=prime[0]&&i*prime[j]<=MAXN; j++)
        {
            prime[prime[j]*i] = 1;
            if(i%prime[j]==0)
            {
                phi[i*prime[j]] = phi[i]*prime[j];
//若prime[j]是i的质因子,则根据计算公式,i已经包括i*prime[j]的所有质因子
//prime数组 中的素数是递增的,当 i 能整除 prime[j],那么 i*prime[j+1] 这个合数肯定被 prime[j] //乘以某个数筛掉,设这个数为m 证明如下
// i = k*prime[j] i*prime[j+1] = k*prime[j]*prime[j+1] = m*prime[j]
//因为i中含有prime[j], prime[j] 比 prime[j+1] 小。接下去的素数同理。所以不用筛下去了。
                break;
            }
            else
            {
                phi[i*prime[j]] = phi[i]*(prime[j]-1);
//实际上就是 phi[i * prime[j]] = phi[i] * phi[prime[j]];
//性质 若m,n互质,则 φ(m?n)=φ(m)?φ(n)。特殊的,当m=2,n为奇数时,φ(2*n)=φ(n)。
            }
        }
    }

}

int main()
{
    phi_prime();
    int n;
    while(1)
    {
        scanf("%d",&n);
        if (n==0) break;
        printf("%d\n",phi[n]);
    }
    return 0;
}

欧拉筛运用了3个欧拉函数的性质,大家如果对欧拉函数有兴趣的话,请移步至欧拉函数性质证明

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值