素数环
-
描述
-
有一个整数n,把从1到n的数字无重复的排列成环,且使每相邻两个数(包括首尾)的和都为素数,称为素数环。
为了简便起见,我们规定每个素数环都从1开始。例如,下图就是6的一个素数环。
-
输入
- 有多组测试数据,每组输入一个n(0<n<20),n=0表示输入结束。 输出
-
每组第一行输出对应的Case序号,从1开始。
如果存在满足题意叙述的素数环,从小到大输出。
否则输出No Answer。
样例输入
-
6 8 3 0
样例输出
-
Case 1: 1 4 3 2 5 6 1 6 5 2 3 4 Case 2: 1 2 3 8 5 6 7 4 1 2 5 8 3 4 7 6 1 4 7 6 5 8 3 2 1 6 7 4 3 8 5 2 Case 3: No Answer
来源
- hdu改编 上传者
转化成一棵多叉树
如果给定的整数为奇数,那么肯定不存在素数环,(因为肯定存在两个奇数相邻,而奇数与奇数的和为偶数,所以一定不是素数环)
#include<stdio.h>
#include<string.h>
int a[25];//用于储存1到20个数
int visit[25];//标记数是否被访问过
int n;
int isprime(int k)
{
int i;
for(i=2;i<=k;i++)
if(k%i==0)
break;
if(k==i)
return 1;
else
return 0;
}
void dfs(int s,int x)//s表示当前行的数字,x表示为数组的第x个位置赋值
{
if(x==n+1&&isprime(a[1]+a[n]))//终止条件,注意是x=n+1,不是x=n
{
for(int i=1;i<n;i++)
printf("%d ",a[i]);
printf("%d\n",a[n]);
}
for(int j=2;j<=n;j++)//从2到n挑选数字
{
if(isprime(j+a[x-1])&&visit[j]==0)//没有被访问过并且满足和上一个数和为素数的条件
{
visit[j]=1;//标记此数已经用过
a[x]=j;//给第x个数赋值
dfs(j,x+1);//递归调用
visit[j]=0;//回溯,下一次可能要用到此数
}
}
}
int main()
{
int cased=1;
while(scanf("%d",&n)!=EOF&&n!=0)
{
memset(a,0,sizeof(a));
memset(visit,0,sizeof(visit));
a[1]=1;
visit[1]=1;
printf("Case %d:\n",cased++);
if(n==1||n%2==0)
dfs(1,2);
else
printf("No Answer\n");
}
return 0;
}