题目描述:
在数据加密和数据压缩中常需要对特殊的字符串进行编码.给定的字母表A由26个小写英文字母组成,即A={a,b...z}.该字母表产生的升序字符串是指定字符串中字母从左到右出现的次序与字母在字母表中出现的次序相同,且每个字符最多出现1次.例如,a,b,ab,bc,xyz,等字符串是升序字符串.现在对字母表A产生的所有长度不超过6的升序字符串按照字典序排列并编码如下
1 2 3 4 ... 26 27 28 ...
a b c d ... z ab ac ...
对于任意长度不超过6的升序字符串,迅速计算出它在上述字典中的编码
数据输入:文件第一行是一个正整数k,表示接下来有k行,在接下来的k行中,每行给出一个字符串
数据输出:文件有k行,每行对应一个字符串的编码
输入文件示例:2 输出文件示例:1
a 2
b
问题分析
核心思想:构造长度为k的字符串的做法是在长度为k-1的字符串前加一个字符
题目要求计算字符串在字典中的编码,那么可以考虑该字符串前有多少个字符串(一般思想是先将所有字符串构造出来),那么就需要分两步计算
(1)计算长度小于k的字符串的总个数
(2)计算长度等于k但是在所给字符串前的字符串的个数
假设长度为k的升序字符串的总个数为total_sum(k),以第i个字符串开始的长度为k的升序字符串的个数为section_sum(i,k),则total_sum(k)=
由题 section_sum(i,1)=1(i从1到26),则total_sum(1)=
=26
section_sum(i,2)=
=26-i(i从1到26),则total_sum(2)=
=
由特殊到一般,得出
section_sum(i,k)=
(i从1到26),
total_sum(k)=
然后就可以用代码实现了,如下
#include<iostream>
#include<cstring>
using namespace std;
int section_sum(int i,int k){
//递归求法,求以i开头长度为k的升序字符串的总个数
int sum=0;
if(k==1)
return 1;
for(int j=i+1;j<=26;j++){
sum+=section_sum(j,k-1);
}
return sum;
}
int total_sum(int k){
//长度为k的升序字符串总个数
int sum=0;
for(int i=1;i<=26;i++){
sum+=section_sum(i,k);
}
return sum;
}
int main(){
char str[10];
cin>>str;
int ans=0;
int len=strlen(str);
for(int i=1;i<len;i++)//先把所有长度小于所求字符串长度的字符串的个数求出来
ans+=total_sum(i);
/*int one=str[0]-'a'+1;//第一个字符的顺序数
for(int i=1;i<one;i++)//求所有长度等于所求字符串长度且首字母在所求首字母之前的字符串个数
ans+=section_sum(i,len);*/
for(int i=0,temp=0;i<len;i++){
int num=str[i]-'a'+1;//下一位字符的顺序数
int len2=len-i;//获取当前的长度
for(int j=temp+1;j<num;j++)
ans+=section_sum(j,len2);
temp=num;
}
cout<<"The last number is "<<ans+1<<endl;
return 0;
}