python和机器学习 第五章 线性回归 (二) 衡量线性回归模型的标准

MSE、RMSE、MAE

1/m 是为了使衡量结果与样本数量无关

使用简单线性回归法

1、使用波士顿数据集

In [474]: from sklearn import datasets
In [476]: boston = datasets.load_boston()
#取出第五个属性,即只使用房间数量这个特征
x=boston.data[:,5]
In [482]: y = boston.target
#去除异常样本数据
In [484]: np.max(y)
Out[484]: 50.0
In [485]: x = x[y<50.0]
In [486]: y = y[y<50.0]

2、进行简单线性回归

#划分数据集
In [491]: from sklearn
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值