自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(38)
  • 收藏
  • 关注

原创 K8s学习与实践

核心原则声明式配置:所有资源通过 YAML 文件管理,纳入版本控制。资源限制:为 Pod 设置 CPU/内存请求与上限(requestslimits滚动更新策略:配置和maxSurge确保服务可用性。

2025-04-29 01:34:27 1199

原创 Flink反压问题解析

反压(Backpressure)是流处理系统中的一种流量控制机制。当下游算子处理速度低于上游数据生产速度时,系统会向上游传递压力信号,迫使上游降低数据发送速率,避免数据堆积和系统崩溃。Flink 通过动态反压机制实现这一过程,但其副作用是可能导致作业延迟增加、吞吐量下降甚至任务失败。反压是流处理系统的自然现象,但长期未解决的反压会导致作业性能恶化。定位瓶颈:优先通过 Web UI 和 Metrics 确定反压源头。数据均衡:避免 KeyBy 热点,合理设置并行度。外部系统优化。

2025-04-26 20:09:43 934

原创 Kettle学习

Kettle(现称为)是一款开源ETL工具,支持从多种数据源抽取、转换和加载数据,广泛应用于数据仓库构建、数据迁移和清洗。可视化操作:通过拖拽组件设计数据处理流程(转换和作业)。多数据源支持:数据库(MySQL/Oracle)、文件(CSV/Excel)、API、NoSQL等。跨平台运行:支持Windows、Linux、MacOS,基于Java开发。Kettle 凭借其强大的可视化能力和丰富的组件库,成为数据工程师的首选ETL工具。核心操作:转换设计、数据清洗、数据库写入。高级技巧。

2025-04-26 19:34:27 1186

原创 Hbase集群管理与实践

通过本指南的实践,您将能够构建出高性能、高可用的HBase集群。:RegionServer的MemStore使用率持续高于90%附:HBase 2.x版本新特性速览。

2025-04-25 21:33:01 826

原创 cdh平台管理与运维最佳实践

通过本文的实践指南,您将能够构建出高效稳定的大数据平台。Spark Executor配置。附:CDH平台常用管理命令速查。:Hive查询速度下降50%

2025-04-25 21:27:14 1179

原创 Redis学习

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-wmXxhVMQ-1745509286244)(https://miro.medium.com/max/1400/1*DB7VQvFeh7Di3lEkSv3XgA.png)]通过本文的系统讲解,您已掌握Redis从核心原理到生产实践的完整知识体系。建议根据实际业务场景选择合适的数据结构和集群方案,定期进行性能压测和故障演练,让Redis真正成为系统架构中的性能加速器。

2025-04-24 23:42:24 814

原创 Restful接口学习

通过本文的讲解,相信您已经掌握了在数据开发中构建高效、安全、易用的RESTful接口的关键技能。在实际项目中,建议从简单接口开始,逐步引入网关、监控等高级功能,最终构建出健壮的数据服务体系。传统的数据交换方式(如JDBC直连、文件传输)存在安全风险大、耦合度高、监控困难等问题。RESTful接口通过标准化交互方式,成为现代数据架构的关键组件。在数据驱动的时代,RESTful接口如同数据高速公路上的收费站,承担着数据交换的核心职责。

2025-04-24 23:36:42 790

原创 Apache Flink 深度解析:流处理引擎的核心原理与生产实践指南

某国际支付平台通过Flink实现全球交易的实时风控,将欺诈识别响应时间从分钟级压缩到毫秒级。使用Savepoint实现版本热切换配置State TTL自动清理过期状态采用Kerberos进行安全认证定期执行优化存储Flink正在向流批一体2.0架构演进,新增的自适应批处理和混合执行模式将进一步提升处理效率。:统一流批调度:实时弹性扩缩容:原生算法库集成掌握Flink的核心原理与实践技能,将为企业构建实时智能系统提供坚实基础。

2025-04-23 12:51:24 2460

原创 Elasticsearch学习

某头部物流公司通过Elasticsearch实现全球运单实时追踪系统,将订单查询响应时间从秒级降至毫秒级。定期执行_forcemerge优化索引碎片使用ILM(Index Lifecycle Management)自动化管理时序数据结合CCR(Cross-Cluster Replication)实现多数据中心容灾启用Vector Search支持AI语义搜索Elasticsearch正从搜索引擎演进为实时分析平台,掌握其核心原理与最佳实践,将为企业数字化转型提供强大的数据支撑能力。

2025-04-23 12:45:54 938

原创 生产环境大数据平台权限管理

某大型电商平台在实施完整权限体系后,成功抵御了日均3000+次的内部异常访问尝试。红蓝对抗演练权限矩阵健康度评估策略引擎规则优化员工安全意识培训未来的权限管理将向智能化、上下文感知方向发展,但核心始终是平衡安全防线与业务效率。建立持续改进的治理机制,方能在数据价值挖掘与风险防控间找到最佳平衡点。注:本文涉及的技术方案需根据具体平台版本进行调整,生产环境实施建议进行充分测试。

2025-04-22 23:56:20 1132

原创 Hive学习

通过合理的配置、表设计及查询优化,Hive 可支撑 PB 级数据分析需求。生产配置:选择高效执行引擎(Tez/Spark),优化分区/分桶和压缩格式。日常技巧:利用 Map Join 和盐值打散优化性能,结合 EXPLAIN 分析执行计划。原理理解:掌握 Hive 的元数据管理与执行引擎机制,针对性调优。附:推荐配置模板Hive 生产环境配置示例Tez 调优指南通过以上方法,您可以将 Hive 性能提升数倍,轻松应对大数据量下的复杂分析任务。

2025-04-22 23:42:28 922

原创 Prometheus+Grafana实时监控系统各项指标

资源监控:实时掌握CPU、内存、磁盘等指标数据库监控:跟踪查询性能、连接数、复制状态告警通知:配置阈值触发邮件/钉钉通知安全加固:通过防火墙和反向代理保护服务后续扩展方向集成Alertmanager实现多通道告警监控Redis、Kafka等中间件部署长期存储(如Thanos)管理历史数据资源参考Prometheus官方文档Grafana仪表盘库。

2025-04-21 01:00:41 652

原创 Oracle内存管理,锁机制以及rac原理学习

内存管理建议监控V$SGASTAT与V$PGASTAT,调整平衡SGA/PGA。使用KEEP池缓存频繁访问的小表。

2025-04-21 00:52:18 1908

原创 国产分布式数据库架构学习

国产数据库已形成差异化技术路线:OceanBase以金融级高可用树立标杆,TiDB凭借开源生态占领开发者心智,达梦专注安全可控政务市场,GaussDB强化云与AI融合。企业选型需结合业务场景(OLTP/HTAP)、合规需求与团队技术栈,避免盲目追求“全能型”产品。未来随着信创深化,国产数据库将在全球市场占据更重要的地位。

2025-04-20 01:24:26 1132

原创 Oceanbase学习

技术演进方向云原生集成:深度整合Kubernetes,支持弹性扩缩容与多云部署。AI自治运维:引入机器学习优化查询计划与故障预测。多模数据库:扩展图计算、时序数据处理能力。

2025-04-20 01:14:28 1106

原创 B tree与B+tree学习

阶数m:每个节点最多包含m-1个键(Key)和m个子节点指针。节点要求根节点至少有1个键。非根节点至少有⌈m/2⌉ -1个键。所有叶子节点在同一层,保证平衡。阶数m:类似B树,但所有数据仅存储在叶子节点。叶子层链表:叶子节点通过指针连接,支持高效范围查询。内部节点键冗余:内部节点的键为子节点最大值副本。B树与B+树通过多路平衡设计,解决了磁盘I/O效率问题,成为数据库与文件系统的基石。B+树凭借顺序访问优化和更高的分支因子,在关系型数据库中占据主导地位。混合索引结构。

2025-04-19 00:48:15 1058

原创 Lsm Tree学习

LSM Tree通过顺序写入和延迟合并的设计,成为现代数据库处理海量写入的核心技术。尽管存在读放大和写放大的挑战,但通过Compaction策略优化、硬件适配(如SSD)和算法改进(如Learned Indexes),其性能仍在不断提升。未来方向AI驱动的Compaction:机器学习预测数据访问模式,优化合并策略。异构存储支持:结合内存、SSD、HDD的分层存储,平衡成本与性能。与新型硬件结合:利用持久化内存(PMEM)加速MemTable持久化。

2025-04-19 00:43:54 946

原创 Spark rdd算子解析与实践

RDD算子是Spark编程的核心工具,合理选择算子可显著提升性能。避免不必要的Shuffle:优先使用窄依赖算子。优化缓存策略:根据数据访问频率选择存储级别。监控与调优:通过Spark UI分析Stage和任务耗时。掌握RDD算子的原理与应用,是构建高效Spark程序的基础。结合DataFrame/Dataset API,可进一步简化复杂数据处理逻辑。

2025-04-16 12:43:20 1192

原创 Zookeeper选举机制

机制优势高可用性:秒级故障恢复,保障服务连续性。数据一致性:通过ZXID确保新Leader拥有最新数据。

2025-04-16 12:37:58 1066 1

原创 Doris学习与实践

是一款基于 MPP(大规模并行处理)架构的分布式 SQL 数据库,专为实时分析与高并发查询设计。极速响应:支持 PB 级数据秒级查询,适用于 BI 报表、用户行为分析等场景。存算一体与存算分离灵活适配:支持冷热数据分层存储(冷数据下沉至对象存储),降低成本 80%。生态兼容性:兼容 MySQL 协议,无缝对接主流 BI 工具(如 Tableau、Grafana)。Apache Doris 凭借其MPP 架构高效查询引擎与灵活生态集成,已成为实时分析领域的标杆工具。存算分离。

2025-04-15 10:57:29 482

原创 Trino深度解析

Trino(原名PrestoSQL)是一款开源的分布式SQL查询引擎,专为交互式分析与异构数据源联邦查询设计。其核心目标是提供低延迟、高吞吐的查询能力,支持从GB到PB级数据的跨源分析,适用于数据湖、实时报表、ETL加速等场景。存算分离架构:通过连接器(Connector)抽象数据源,支持Hive、MySQL、Kafka、Delta Lake等20+数据源的无缝集成。MPP并行处理:基于大规模并行处理(MPP)模型,将查询分解为多个Stage与Task,通过分布式执行提升效率。高性能优化。

2025-04-15 10:55:15 957

原创 Docker学习与实践

镜像精简与安全加固是稳定性的基石;资源限制与编排工具是高效运维的核心;自动化流程与监控体系是持续交付的保障。随着云原生技术的发展,Docker与Kubernetes、服务网格等工具的深度整合将继续推动企业数字化转型。扩展阅读Docker官方文档Kubernetes与Docker集成指南容器安全白皮书通过系统性实践与持续优化,Docker将成为企业构建敏捷、可靠IT架构的核心引擎。

2025-04-14 01:47:57 787

原创 数仓理论知识

分层设计原则根据业务复杂度选择分层粒度,避免过度设计。使用星型模型简化查询,避免雪花模型的多表关联。SCD选型建议高频变更属性使用微型维度(如用户偏好)。拉链表配合冷热分离,平衡存储与性能。表类型选择小维度→全量表;大维度→拉链表;事件流→增量表。通过合理的设计与优化,数据仓库可成为企业数据分析的坚实底座,支持从实时监控到深度洞察的全场景需求。附录拉链表SQL实现详解数仓分层设计实战SCD类型对比。

2025-04-14 01:44:31 747

原创 Prometheus学习

普罗米修斯(Prometheus)以其灵活的数据模型、高效的存储引擎和强大的查询能力,成为云原生时代监控领域的标杆工具。最佳实践建议合理规划指标粒度:避免过度采集导致存储压力。结合 Grafana 可视化:通过仪表盘实时展示关键指标。告警分级处理:利用 Alertmanager 实现紧急事件优先通知。长期存储方案:集成 Thanos 或 VictoriaMetrics 实现历史数据归档。无论是神话中的“盗火者”还是技术领域的监控先锋,普罗米修斯都象征着突破与革新。

2025-04-13 02:13:03 1109

原创 Mysql日志全解析

数据安全:通过Binlog+Redo Log实现秒级RPO性能优化:分析Slow Log定位低效SQL高可用架构:基于Binlog构建主从复制集群合规审计:满足GDPR等数据监管要求。

2025-04-13 02:06:56 903

原创 Kafka学习

Kafka凭借其高吞吐、低延迟和分布式特性,成为实时数据处理的核心组件。关键实践建议合理规划分区数:根据业务吞吐量预估分区数量,避免过多导致管理复杂度上升。监控与调优:使用Prometheus+Grafana监控集群状态,定期优化配置(如调整清理过期数据)。容灾设计:采用多副本、跨可用区部署,结合云原生方案(如阿里云ApsaraMQ)实现低成本高可用。通过深入理解Kafka的机制并针对性优化,可有效支撑日志收集、实时分析、事件驱动架构等多样化场景,为企业数字化转型提供坚实的数据流基础。

2025-04-12 00:20:27 660

原创 Redis学习

Redis(Remote Dictionary Server)是一个开源的、基于内存的高性能键值存储系统,支持多种数据结构,提供持久化、高可用、分布式等特性。其核心设计目标是极致的读写性能和灵活的数据模型,广泛应用于缓存、消息队列、实时统计等场景。优势:高性能、丰富的数据结构、持久化与高可用特性,使其成为缓存、实时数据处理的首选。适用场景缓存层:缓解数据库压力,加速热点数据访问。实时统计:如排行榜、计数器、社交关系。消息系统:轻量级队列与发布/订阅模型。局限:内存成本较高,不适合存储海量冷数据;

2025-04-12 00:15:29 686

原创 ClickHouse深度解析:从核心原理到高阶实践

一、ClickHouse概述ClickHouse 是一款由Yandex开源的列式存储数据库(OLAP),专为海量数据分析设计,支持实时查询与高吞吐量处理。其核心优势包括:列式存储:数据按列压缩存储,减少I/O开销,提升分析效率。向量化查询执行:通过SIMD指令并行处理数据块(列),大幅降低CPU消耗。分布式架构:支持水平扩展,通过分片(Shard)与副本(Replica)实现高可用与负载均衡。二、安装与配置。

2025-04-11 14:59:52 723

原创 Hbase学习

设计权衡:RowKey设计需在读写性能、热点规避、查询效率间平衡。例如,加盐提升写入但增加查询复杂度,反转优化扫描但牺牲有序性。工具辅助:利用HBase预分区(Pre-split)提前规划Region范围,结合监控工具(如HBase Shell的status命令)分析热点Region。业务适配:根据查询模式选择设计策略。时间序列数据推荐时间戳反转,高并发写入场景优先加盐或哈希。附录HBase官方文档HBase性能调优指南。

2025-04-11 10:41:54 1999

原创 Greenplum数据库学习

Greenplum作为开源MPP数据库的标杆,凭借其分布式计算能力、PostgreSQL生态兼容性及成本优势,成为企业构建数据仓库的优选方案。尽管在极端低延迟场景下不及Teradata或Vertica,但其灵活的扩展性与丰富的集成能力(如云原生支持)使其在中大型分析场景中表现卓越。Greenplum 是一款开源的 大规模并行处理(MPP) 数据库,基于PostgreSQL开发,专为大数据分析、数据仓库和OLAP场景设计。混合负载支持:通过资源组隔离ETL任务与即席查询,平衡吞吐与响应速度。

2025-04-10 13:27:31 940

原创 Tidb学习

TiDB是由PingCAP公司开源的分布式NewSQL数据库,基于Google Spanner/F1论文设计,具备强一致性、水平扩展、高可用性等特性。其核心定位是解决MySQL单机容量瓶颈与复杂分布式事务问题,支持HTAP(混合事务与分析处理),广泛应用于互联网、金融、物流等高并发场景。TiDB作为新一代分布式数据库,凭借其弹性扩展、强一致性与HTAP能力,成为处理海量数据与混合负载的理想选择。

2025-04-09 23:56:58 469

原创 达梦数据库学习

达梦数据库(DM Database)是武汉达梦公司推出的国产大型关系型数据库,具备完全自主知识产权,广泛应用于政府、金融、能源等关键领域。其设计遵循SQL标准,支持ACID事务、高并发、高可用等特性,是国产数据库的标杆产品。达梦数据库凭借其自主可控、高安全性和高性能特性,成为国产数据库领域的佼佼者。尽管在生态丰富性上相比Oracle、MySQL仍有差距,但在政策支持与技术进步的双重驱动下,达梦正逐步成为关键行业的核心数据库选择。附录达梦官方文档达梦社区论坛:技术问题交流与案例分享。

2025-04-09 23:52:22 711

原创 mysql基础学习

innodb_buffer_pool_size: 建议配置为物理内存的70-80%– innodb_log_file_size: 单个日志文件大小(建议1-2GB)– innodb_buffer_pool_instances: 多实例减少锁争用。– innodb_log_files_in_group: 日志组文件数(通常2)innodb_flush_log_at_trx_commit=1(最安全)innodb_buffer_pool_size = 总内存 * 0.7。– 重新收集统计信息。

2025-04-08 22:54:00 339

原创 深入解析分布式CAP理论

本文将从CAP理论的核心概念出发,结合主流数据库(如MySQL、MongoDB、Redis、Cassandra等)的CAP特性,帮助你在实际项目中做出更明智的技术选型。现代数据库(如MongoDB、TiDB)正在尝试突破CAP限制,提供更灵活的方案。CP(放弃A):强一致性系统(如ZooKeeper),网络分区时可能拒绝服务。AP(放弃C):高可用系统(如Cassandra),允许短暂数据不一致。CA(放弃P):单机数据库(如MySQL主从架构),无法容忍网络分区。物联网(IoT)、时序数据(高写入吞吐)

2025-04-08 22:34:14 741

原创 hadoop相关操作命令

hadoop、hdfs相关命令学习

2024-01-02 17:20:15 433

原创 linux文本三剑客grep、awk、sed学习

awk、sed、grep学习

2024-01-02 16:43:36 364

原创 linux内核相关参数学习

Linux内核相关参数学习

2024-01-02 16:33:02 451

原创 linux命令学习

基础linux命令

2023-12-28 14:48:38 409

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除