推荐系统的数据流

博客介绍了传统文件系统加数据库的数据处理方法,重点对比了批处理和流计算两种大数据架构。批处理采用分布式存储和MapReduce,只能处理静态数据,延迟大;流计算在数据流动中处理,利用滑动窗口,延迟仅与窗口大小有关,平台有Storm、Spark Streaming、Flink等。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  1. 传统文件系统 + 数据库的数据存储和处理方法

  2. 批处理大数据架构:分布式存储 + MapReduce

只能批量处理已经落盘的静态数据,无法在数据采集、传输等数据流动的过程中处理数据,因此被称为批处理。

过程:数据源 – ETL(服务器端预处理) – HDFS(分布式存储系统) – MapReduce(分布式数据批处理) – 数据使用如BI工具,数据分析,特征工程

缺点:只能批处理HDFS中的数据,因此延迟性较大,影响实时性。

  1. 流计算大数据架构:流计算平台 + 存储系统

流计算大数据架构在数据流产生及传递的过程中流式的消费并处理数据,利用“滑动窗口”这个概念,在每个窗口内部,数据被短暂缓存,消费,完成一个窗口的数据处理后,流计算平台滑到下一时间窗口,因此,流计算平台的延迟仅与滑动窗口的大小有关。流计算平台包括:Storm,Spark Streaming,Flink。流计算平台不仅可以进行单个数据流的处理,还可以join不同数据流,bing

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值