- 博客(115)
- 收藏
- 关注
转载 vue router-view 使用
vue router-view 使用在APP.vue主组件中,内容上就只有,然后在其他页面也有,可以理解为:一层路径(/xxx)对应一个router-view,也就是说需要在父组件里书写router-view。比如url: /a/b/c (假设a、b、c都为正常路径,不会作为参数)那/a对应的就是App.vue中的router-view,/a进入a.vue中那/a/b对应的就是a.vue中的router-view, /a/b进入b.vue中10分钟学会嵌套路由的使用(router-view)小
2022-03-16 08:55:55 1126
转载 js的call() ,apply() 两种方法的区别和用法
js的call() ,apply() 两种方法的区别和用法,最白话文的解释,让枯燥滚粗!
2022-01-10 01:13:41 119
原创 <a>标签中href=“javascript:;“
javascript: 是表示在触发默认动作时,执行一段JavaScript代码,而 javascript:; 表示什么都不执行,这样点击时就没有任何反应。href: URL 规定链接的目标 URL。<a href="www.baidu.com"></a> 这个a标签的话就是指点击后跳转到百度首页<a href="javascript:;"></a> 点击后是不会跳转的,一般用于开发时页面还未完成。...
2021-12-09 20:41:06 1461
转载 关于调试的概念:步入,步过,步出
关于调试的概念:步入,步过,单步执行我的代码,步出运行的该行代码有可能运行了很多代码,例如这行代码执行的是一个函数体代码行。单步跳过是指运行完该行代码之后运行下一行代码。单步跳入是指运行该行代码的同时,进入该行代码,查看该代码如何运行,查看详细的运行过程。...
2021-12-05 22:05:16 1970
原创 CSS 表格
本文讲述了CSS表格里关于id选择器的一些使用的疑惑,直接以例子的形式给出。<!DOCTYPE html><html><head><meta charset="utf-8"> <title>菜鸟教程(runoob.com)</title><style>#customers{ font-family:"Trebuchet MS", Arial, Helvetica, sans-serif; width:10
2021-11-12 23:14:34 822
原创 pytorch 误区
num_oov = max(torch.max(ext_src_seq - self.vocab_size + 1), 0)误区解读:ext_src_seq: [batch_size, sequence_len]self.vocab_size: 50000ext_src_seq - self.vocab_size + 1:这种运算实际上是对ext_src_seq中的每个元素进行加减运算,相当于把self.vocab_size广播成[batch_size, sequence_len]...
2021-11-03 19:38:23 183
转载 PyTorch中的contiguous
Pytorch中的Size, storage offset, stride概念PyTorch中的contiguous
2021-11-01 12:02:20 140
原创 pytorch scatter和scatter_详解
文章目录0. Introduction1. 定义2. 详解例1例2Reference:0. Introductionscatter() 和 scatter_() 的作用是一样的,只不过 scatter() 不会直接修改原来的 Tensor,而 scatter_() 会PyTorch 中,一般函数加下划线代表直接在原来的 Tensor 上修改1. 定义scatter(dim, index, src) 的参数有 3 个dim:沿着哪个维度进行索引index:用来 scatter 的元素索引
2021-10-30 12:17:09 459
原创 collate_fn 使用详解
collate_fn 参数当继承Dataset类自定义类时,__getitem__方法一般返回一组类似于(image,label)的一个样本,在创建DataLoader类的对象时,collate_fn函数会将batch_size个样本整理成一个batch样本,便于批量训练。default_collate(batch)中的参数就是这里的 [self.dataset[i] for i in indices],indices是从所有样本的索引中选取的batch_size个索引,表示本次批量获取这些样本进行训练
2021-10-28 12:42:11 12702 2
转载 数据库的常见设计范式
1NF:符合1NF的关系中的每个属性都不可再分2NF:2NF在1NF的基础之上,消除了非主属性对于码的部分函数依赖3NF:3NF在2NF的基础之上,消除了非主属性对于码的传递函数依赖 BCNF:在 3NF 的基础上消除主属性对于码的部分与传递函数依赖详解: 如何理解关系型数据库的常见设计范式? - 刘慰的回答 - 知乎...
2021-10-23 19:40:38 89
原创 函数依赖及其子概念
文章目录函数依赖完全函数依赖部分函数依赖传递函数依赖函数依赖定义: 设X,Y是关系R的两个属性集合,当任何时刻R中的任意两个元组中的X属性值相同时,则它们的Y属性值也相同,则称X函数决定Y,或Y函数依赖于X。理解: 若在一张表中,属性或属性组X确定,必定能确定属性Y的值,则称Y函数依赖于X,记做X->Y。也就是说,在数据表中,不存在任意两条记录,它们在X属性(或属性组)上的值相同,而在Y属性上的值不同。这也就是“函数依赖”名字的由来,类似于函数关系 Y = f(X),在X的值确定的情况下,Y的值
2021-10-23 18:34:37 1675
原创 关系模型中的三类完整性约束:实体完整性、参照完整性和用户定义完整性
文章目录实体完整性参照完整性用户定义完整性实体完整性定义:若属性A是基本关系R的主属性,则属性A不能取空值(空值就是“不知道”或“不存在”或“无意义”的值) 例: 选修(学号,课程号,成绩) “学号、课程号”为主码 “学号”和“课程号”两个属性都不能取空值实体完整性规则的说明:实体完整性规则是针对基本关系而言的。 一个基本表通常对应现实世界的一个实体集。现实世界中的实体是可区分的,即它们具有某种唯一性标识。关系模型中以主码作为唯一性标识。主码中的属性即主属性不能取空值。
2021-10-23 17:59:53 15182 1
原创 超码、候选码、主码、主属性、非主属性
数据库相关基础概念超码候选码主码主属性非主属性超码定义:一个或多个属性的集合,这些属性的组合可以使我们在一个实体集中唯一的标识一个实体。例如:学生是一个实体,则学生的集合是一个实体集,而超码是用来在学生的集合中区分不同的学生。假设学生(实体)具有多个属性:学号,身份证号,姓名,性别。因为通过学号可以找到唯一一个学生,所以{学号}是一个超码,同理{学号,身份证号}、{学号,身份证号,姓名}、{学号,身份证号,姓名,性别}、{身份证号}、{身份证号,姓名}、{身份证号,姓名、性别}也是超码.在这里,因为不
2021-10-23 17:31:15 15211 2
转载 强化学习 policy gradient
浅谈Policy Gradient深度增强学习之Policy Gradient方法1【强化学习】策略梯度(Policy Gradient)强化学习基础四–Policy Gradient 理论推导
2021-10-20 22:54:37 97
转载 SRL(Semantic Role Labelling): 语义角色标注
文章目录0. Introduction1. SRL定义2. 语料、语义角色3. 传统SRL方法4. 基于神经网络的SRL0. Introduction在自然语言处理中,从分析技术上可以分为下面三种词法分析 lexical analysis句法分析 syntactic parsing语义分析 semantic parsing1. SRL定义Semantic Role Labeling (SRL) is defined as the task to recognize arguments
2021-10-13 00:18:03 4257 3
转载 Overleaf 指南:30 分钟 LaTeX 入门
大纲1 什么是 Latex2 为什么要学习 LaTeX3 编写你的第一段4 文档的序言5 添加标题,作者和日期6 添加注释7 加粗,斜体和下划线8 添加图片8.1 标题、标签和引用9 在 LaTeX 中创建列表9.1 无序列表9.2 有序列表10 在 LaTeX 中添加数学表达式11 基本格式11.1 概要11.2 段落和新行12 章节和分段13 创建表格13.1 在 LaTeX 中创建一个简单的表格13.2 添加边框13.3 标题、标签和引用14 添加目录本文是对 Overleaf 提供的 Learn
2021-09-10 21:53:15 8000 1
转载 K-Bert 详解
文章目录1. Introduction1.1 问题陈述1.2 解决办法1.3 论文贡献2. 模型2.1 符号表示2.2 模型架构2.3 Knowledge Layer2.4 Embedding Layer2.4.1 Token Embedding2.4.2 Soft-position Embedding2.4.3 Segment Embedding2.5 Seeing Layer2.6 Mask-Transformer2.6.1 Mask-Self-Attention3. 实验结果3.1 预训练语料库3.2
2021-09-04 21:10:31 3998 7
转载 SpanBert 详解
文章目录0. 摘要1. Introduction2. 背景:BERT3. Model3.1 Span Masking3.2 Span Boundary Objective (SBO)3.3 Single-Sequence Training4. 实验设置4.1 任务4.1.1 Extractive Question Answering4.1.2 Coreference Resolution4.1.3 Relation Extraction4.1.4 GLUE4.2 实现4.3 Baselines5. 实验结果
2021-09-02 20:52:01 5729 2
转载 RoBERTa 详解
文章目录0. 背景1. 介绍2. 背景3. 实验设置3.1 配置3.2 数据3.3 评估4. 训练过程分析4.1 Static vs Dynamic Masking4.2 Model Input Format and NSP4.3 Training with large batches4.4 Text Encoding5. RoBERTa5.1 GLUE上的结果5.2 SQuAD上的结果5.3 RACE上的结果6. 总结0. 背景机构:Facebook & 华盛顿大学作者:Yinhan Liu
2021-08-31 11:39:35 34017
转载 ALBert 详解
文章目录1. Abstract2. Introduction3. ALBert模型组成3.1 参数缩减方法3.2 SOP预训练任务4. 实验设置4.1 Segments-Pair4.2 Masked-ngram5. 实验结果5.1 Bert与ALBert对比5.2 嵌入向量的因式分解5.3 跨层参数共享5.4 句子次序预测(SOP)在NLP任务中,一个好的预训练模型能够提升模型的效果。当前一个SOTA的模型,它有几百万或者十亿以上的参数,如果要扩大模型规模,就会遇到这些计算机内存上的限制,同时训练速度会受
2021-08-21 20:23:26 9678
转载 BERT, GPT, ELMo模型对比
BERT, GPT, ELMo之间的不同点关于特征提取器:ELMo采用两部分双层双向LSTM进行特征提取, 然后再进行特征拼接来融合语义信息.GPT和BERT采用Transformer进行特征提取.BERT采用的是Transformer架构中的Encoder模块.GPT采用的是Transformer架构中的Decoder模块.很多NLP任务表明Transformer的特征提取能力强于LSTM, 对于ELMo而言, 采用1层静态token embedding + 2层LSTM, 提取特征的能力
2021-08-19 09:02:02 2233
转载 GPT详解
目录1. 导读2. 引言3. 论文动机与创新点4. GPT模型5. Pre train6. Fine-tuning7. Task-specific input transformations8. 实验结果1. 导读今天阅读的是 OpenAI 2018 年的论文《Improving Language Understanding by Generative Pre-Training》,截止目前共有 600 多引用。在这篇论文中,作者提出了一种半监督学习方法——Generative Pre-Training
2021-08-13 23:02:50 12513 1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人