毕设基于yolov9的红黄蓝绿球识别检测系统(含详细运行教程+模型+指标曲线).zip
【使用教程】
一、环境配置
1、建议下载anaconda和pycharm
在anaconda中配置好环境,然后直接导入到pycharm中,在pycharm中运行项目
anaconda和pycharm安装及环境配置参考网上博客,有很多博主介绍
2、在anacodna中安装requirements.txt中的软件包
命令为:pip install -r requirements.txt
或者改成清华源后再执行以上命令,这样安装要快一些
软件包都安装成功后才算成功
3、安装好软件包后,把anaconda中对应的python导入到pycharm中即可(不难,参考网上博客)
二、环境配置好后,开始训练(也可以训练自己数据集)
1、数据集准备
需要准备yolo格式的目标检测数据集,如果不清楚yolo数据集格式,或者有其他数据训练需求,请看博主yolo格式各种数据集集合链接:https://blog.csdn.net/DeepLearning_/article/details/127276492
里面涵盖了上百种yolo数据集,且在不断更新,基本都是实际项目使用。来自于网上收集、实际场景采集制作等,自己使用labelimg标注工具标注的。数据集质量绝对有保证!
本项目所使用的数据集,见csdn该资源下载页面中的介绍栏,里面有对应的下载链接,下载后可直接使用。
2、数据准备好,开始修改配置文件
参考代码中data文件夹下的banana_ripe.yaml,可以自己新建一个不同名称的yaml文件
train:训练集的图片路径
val:验证集的图片路径
names:
0: very-ripe 类别1
1: immature 类别2
2: mid-ripe 类别3
格式按照banana_ripe.yaml照葫芦画瓢就行,不需要过多参考网上的
3、修改train_dual.py中的配置参数,开始训练模型
方式一:
修改点:
a.--weights参数,填入'yolov9-s.pt',博主训练的是yolov9-s,根据自己需求可自定义
b.--cfg参数,填入 models/detect/yolov9-c.yaml
c.--data参数,填入data/banana_ripe.yaml,可自定义自己的yaml路径
d.--hyp参数,填入hyp.scratch-high.yaml
e.--epochs参数,填入100或者200都行,根据自己的数据集可改
f.--batch-size参数,根据自己的电脑性能(显存大小)自定义修改
g.--device参数,一张显卡的话,就填0。没显卡,使用cpu训练,就填cpu
h.--close-mosaic参数,填入15
以上修改好,直接pycharm中运行train_dual.py开始训练
方式二:
命令行方式,在pycharm中的终端窗口输入如下命令,可根据自己情况修改参数
官方示例:python train_dual.py --workers 8 --device 0 --batch 16 --data data/coco.yaml --img 640 --cfg models/detect/yolov9-c.yaml --weights '' --name yolov9-c --hyp hyp.scratch-high.yaml --min-items 0 --epochs 500 --close-mosaic 15
训练完会在runs/train文件下生成对应的训练文件及模型,后续测试可以拿来用。
三、测试
1、训练完,测试
修改detect_dual.py中的参数
--weights,改成上面训练得到的best.pt对应的路径
--source,需要测试的数据图片存放的位置,代码中的test_imgs
--conf-thres,置信度阈值,自定义修改
--iou-thres,iou阈值,自定义修改
其他默认即可
pycharm中运行detect_dual.py
在runs/detect文件夹下存放检测结果图片或者视频
【备注】
1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用!有问题请及时沟通交流。
2、适用人群:计算机相关专业(如计科、信息安全、数据科学与大数据技术、人工智能、通信、物联网、自动化、电子信息等)在校学生、专业老师或者企业员工下载使用。
【特别强调】
1、csdn上资源保证是完整最新,会不定期更新优化;
2、请用自己的账号在csdn官网下载,若通过第三方代下,博主不对您下载的资源作任何保证,且不提供任何形式的技术支持和答疑!!!
深度学习毕设基于yolov9的实验室小鼠肿瘤检测系统(含详细运行教程+模型+指标曲线).zip
【使用教程】
一、环境配置
1、建议下载anaconda和pycharm
在anaconda中配置好环境,然后直接导入到pycharm中,在pycharm中运行项目
anaconda和pycharm安装及环境配置参考网上博客,有很多博主介绍
2、在anacodna中安装requirements.txt中的软件包
命令为:pip install -r requirements.txt
或者改成清华源后再执行以上命令,这样安装要快一些
软件包都安装成功后才算成功
3、安装好软件包后,把anaconda中对应的python导入到pycharm中即可(不难,参考网上博客)
二、环境配置好后,开始训练(也可以训练自己数据集)
1、数据集准备
需要准备yolo格式的目标检测数据集,如果不清楚yolo数据集格式,或者有其他数据训练需求,请看博主yolo格式各种数据集集合链接:https://blog.csdn.net/DeepLearning_/article/details/127276492
里面涵盖了上百种yolo数据集,且在不断更新,基本都是实际项目使用。来自于网上收集、实际场景采集制作等,自己使用labelimg标注工具标注的。数据集质量绝对有保证!
本项目所使用的数据集,见csdn该资源下载页面中的介绍栏,里面有对应的下载链接,下载后可直接使用。
2、数据准备好,开始修改配置文件
参考代码中data文件夹下的banana_ripe.yaml,可以自己新建一个不同名称的yaml文件
train:训练集的图片路径
val:验证集的图片路径
names:
0: very-ripe 类别1
1: immature 类别2
2: mid-ripe 类别3
格式按照banana_ripe.yaml照葫芦画瓢就行,不需要过多参考网上的
3、修改train_dual.py中的配置参数,开始训练模型
方式一:
修改点:
a.--weights参数,填入'yolov9-s.pt',博主训练的是yolov9-s,根据自己需求可自定义
b.--cfg参数,填入 models/detect/yolov9-c.yaml
c.--data参数,填入data/banana_ripe.yaml,可自定义自己的yaml路径
d.--hyp参数,填入hyp.scratch-high.yaml
e.--epochs参数,填入100或者200都行,根据自己的数据集可改
f.--batch-size参数,根据自己的电脑性能(显存大小)自定义修改
g.--device参数,一张显卡的话,就填0。没显卡,使用cpu训练,就填cpu
h.--close-mosaic参数,填入15
以上修改好,直接pycharm中运行train_dual.py开始训练
方式二:
命令行方式,在pycharm中的终端窗口输入如下命令,可根据自己情况修改参数
官方示例:python train_dual.py --workers 8 --device 0 --batch 16 --data data/coco.yaml --img 640 --cfg models/detect/yolov9-c.yaml --weights '' --name yolov9-c --hyp hyp.scratch-high.yaml --min-items 0 --epochs 500 --close-mosaic 15
训练完会在runs/train文件下生成对应的训练文件及模型,后续测试可以拿来用。
三、测试
1、训练完,测试
修改detect_dual.py中的参数
--weights,改成上面训练得到的best.pt对应的路径
--source,需要测试的数据图片存放的位置,代码中的test_imgs
--conf-thres,置信度阈值,自定义修改
--iou-thres,iou阈值,自定义修改
其他默认即可
pycharm中运行detect_dual.py
在runs/detect文件夹下存放检测结果图片或者视频
【备注】
1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用!有问题请及时沟通交流。
2、适用人群:计算机相关专业(如计科、信息安全、数据科学与大数据技术、人工智能、通信、物联网、自动化、电子信息等)在校学生、专业老师或者企业员工下载使用。
【特别强调】
1、csdn上资源保证是完整最新,会不定期更新优化;
2、请用自己的账号在csdn官网下载,若通过第三方代下,博主不对您下载的资源作任何保证,且不提供任何形式的技术支持和答疑!!!
基于YOLOv9的道路车辆交通灯行人检测系统(共7类目标)+含详细运行教程+模型+指标曲线.zip
【使用教程】
一、环境配置
1、建议下载anaconda和pycharm
在anaconda中配置好环境,然后直接导入到pycharm中,在pycharm中运行项目
anaconda和pycharm安装及环境配置参考网上博客,有很多博主介绍
2、在anacodna中安装requirements.txt中的软件包
命令为:pip install -r requirements.txt
或者改成清华源后再执行以上命令,这样安装要快一些
软件包都安装成功后才算成功
3、安装好软件包后,把anaconda中对应的python导入到pycharm中即可(不难,参考网上博客)
二、环境配置好后,开始训练(也可以训练自己数据集)
1、数据集准备
需要准备yolo格式的目标检测数据集,如果不清楚yolo数据集格式,或者有其他数据训练需求,请看博主yolo格式各种数据集集合链接:https://blog.csdn.net/DeepLearning_/article/details/127276492
里面涵盖了上百种yolo数据集,且在不断更新,基本都是实际项目使用。来自于网上收集、实际场景采集制作等,自己使用labelimg标注工具标注的。数据集质量绝对有保证!
本项目所使用的数据集,见csdn该资源下载页面中的介绍栏,里面有对应的下载链接,下载后可直接使用。
2、数据准备好,开始修改配置文件
参考代码中data文件夹下的banana_ripe.yaml,可以自己新建一个不同名称的yaml文件
train:训练集的图片路径
val:验证集的图片路径
names:
0: very-ripe 类别1
1: immature 类别2
2: mid-ripe 类别3
格式按照banana_ripe.yaml照葫芦画瓢就行,不需要过多参考网上的
3、修改train_dual.py中的配置参数,开始训练模型
方式一:
修改点:
a.--weights参数,填入'yolov9-s.pt',博主训练的是yolov9-s,根据自己需求可自定义
b.--cfg参数,填入 models/detect/yolov9-c.yaml
c.--data参数,填入data/banana_ripe.yaml,可自定义自己的yaml路径
d.--hyp参数,填入hyp.scratch-high.yaml
e.--epochs参数,填入100或者200都行,根据自己的数据集可改
f.--batch-size参数,根据自己的电脑性能(显存大小)自定义修改
g.--device参数,一张显卡的话,就填0。没显卡,使用cpu训练,就填cpu
h.--close-mosaic参数,填入15
以上修改好,直接pycharm中运行train_dual.py开始训练
方式二:
命令行方式,在pycharm中的终端窗口输入如下命令,可根据自己情况修改参数
官方示例:python train_dual.py --workers 8 --device 0 --batch 16 --data data/coco.yaml --img 640 --cfg models/detect/yolov9-c.yaml --weights '' --name yolov9-c --hyp hyp.scratch-high.yaml --min-items 0 --epochs 500 --close-mosaic 15
训练完会在runs/train文件下生成对应的训练文件及模型,后续测试可以拿来用。
三、测试
1、训练完,测试
修改detect_dual.py中的参数
--weights,改成上面训练得到的best.pt对应的路径
--source,需要测试的数据图片存放的位置,代码中的test_imgs
--conf-thres,置信度阈值,自定义修改
--iou-thres,iou阈值,自定义修改
其他默认即可
pycharm中运行detect_dual.py
在runs/detect文件夹下存放检测结果图片或者视频
【备注】
1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用!有问题请及时沟通交流。
2、适用人群:计算机相关专业(如计科、信息安全、数据科学与大数据技术、人工智能、通信、物联网、自动化、电子信息等)在校学生、专业老师或者企业员工下载使用。
【特别强调】
1、csdn上资源保证是完整最新,会不定期更新优化;
2、请用自己的账号在csdn官网下载,若通过第三方代下,博主不对您下载的资源作任何保证,且不提供任何形式的技术支持和答疑!!!
基于yolov9的道路车辆(卡车、小车、公交车)识别检测系统(含详细运行教程+模型+指标曲线).zip
【使用教程】
一、环境配置
1、建议下载anaconda和pycharm
在anaconda中配置好环境,然后直接导入到pycharm中,在pycharm中运行项目
anaconda和pycharm安装及环境配置参考网上博客,有很多博主介绍
2、在anacodna中安装requirements.txt中的软件包
命令为:pip install -r requirements.txt
或者改成清华源后再执行以上命令,这样安装要快一些
软件包都安装成功后才算成功
3、安装好软件包后,把anaconda中对应的python导入到pycharm中即可(不难,参考网上博客)
二、环境配置好后,开始训练(也可以训练自己数据集)
1、数据集准备
需要准备yolo格式的目标检测数据集,如果不清楚yolo数据集格式,或者有其他数据训练需求,请看博主yolo格式各种数据集集合链接:https://blog.csdn.net/DeepLearning_/article/details/127276492
里面涵盖了上百种yolo数据集,且在不断更新,基本都是实际项目使用。来自于网上收集、实际场景采集制作等,自己使用labelimg标注工具标注的。数据集质量绝对有保证!
本项目所使用的数据集,见csdn该资源下载页面中的介绍栏,里面有对应的下载链接,下载后可直接使用。
2、数据准备好,开始修改配置文件
参考代码中data文件夹下的banana_ripe.yaml,可以自己新建一个不同名称的yaml文件
train:训练集的图片路径
val:验证集的图片路径
names:
0: very-ripe 类别1
1: immature 类别2
2: mid-ripe 类别3
格式按照banana_ripe.yaml照葫芦画瓢就行,不需要过多参考网上的
3、修改train_dual.py中的配置参数,开始训练模型
方式一:
修改点:
a.--weights参数,填入'yolov9-s.pt',博主训练的是yolov9-s,根据自己需求可自定义
b.--cfg参数,填入 models/detect/yolov9-c.yaml
c.--data参数,填入data/banana_ripe.yaml,可自定义自己的yaml路径
d.--hyp参数,填入hyp.scratch-high.yaml
e.--epochs参数,填入100或者200都行,根据自己的数据集可改
f.--batch-size参数,根据自己的电脑性能(显存大小)自定义修改
g.--device参数,一张显卡的话,就填0。没显卡,使用cpu训练,就填cpu
h.--close-mosaic参数,填入15
以上修改好,直接pycharm中运行train_dual.py开始训练
方式二:
命令行方式,在pycharm中的终端窗口输入如下命令,可根据自己情况修改参数
官方示例:python train_dual.py --workers 8 --device 0 --batch 16 --data data/coco.yaml --img 640 --cfg models/detect/yolov9-c.yaml --weights '' --name yolov9-c --hyp hyp.scratch-high.yaml --min-items 0 --epochs 500 --close-mosaic 15
训练完会在runs/train文件下生成对应的训练文件及模型,后续测试可以拿来用。
三、测试
1、训练完,测试
修改detect_dual.py中的参数
--weights,改成上面训练得到的best.pt对应的路径
--source,需要测试的数据图片存放的位置,代码中的test_imgs
--conf-thres,置信度阈值,自定义修改
--iou-thres,iou阈值,自定义修改
其他默认即可
pycharm中运行detect_dual.py
在runs/detect文件夹下存放检测结果图片或者视频
【备注】
1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用!有问题请及时沟通交流。
2、适用人群:计算机相关专业(如计科、信息安全、数据科学与大数据技术、人工智能、通信、物联网、自动化、电子信息等)在校学生、专业老师或者企业员工下载使用。
【特别强调】
1、csdn上资源保证是完整最新,会不定期更新优化;
2、请用自己的账号在csdn官网下载,若通过第三方代下,博主不对您下载的资源作任何保证,且不提供任何形式的技术支持和答疑!!!
基于计算机视觉yolov5算法实现小鼠肿瘤块检测及尺寸大小预测系统python源码+模型+测试数据.zip
基于计算机视觉yolov5算法实现小鼠肿瘤块检测及尺寸大小预测系统python源码+模型+测试数据
【项目介绍】
实验室小鼠
小鼠身体肿瘤块检测,及对肿瘤块大小预测,含模型、测试视频、图片、评估指标曲线等
python系统源码、完整源码,提供技术支持~
【特别强调】
1、csdn上资源保证是完整最新,会不定期更新优化;
2、请用自己的账号在csdn官网下载,若通过第三方代下,博主不对您下载的资源作任何保证,且不提供任何形式的技术支持和答疑!!!
毕设新项目基于pyqt5+python深度学习的刀棒、横幅识别检测系统(带GUI)源码+模型+数据集+操作教程.zip
基于pyqt5+python深度学习的刀棒、横幅识别检测系统(带GUI)源码+模型+数据集+操作教程.zip
项目操作说明:
1、搭建配置环境,正确安装完requirements.txt中的包,建议pytorch使用1.7~1.8之间的版本。
2、模型权重是model_weight文件夹下的exp_*/weights/best.pt文件,需要把best.pt拷贝到model_weight文件夹下。
3、完整“1”和“2”两步后,pycharm中或者anaconda命令窗口,执行main_gui.py,即可打开系统GUI界面。
4、GUI界面有三个按钮,分别是“图片检测”、“摄像头检测”,“视频检测”。点击选择即可。
【特别强调】
1、csdn上资源保证是完整最新,会不定期更新优化;
2、请用自己的账号在csdn官网下载,若通过第三方代下,博主不对您下载的资源作任何保证,且不提供任何形式的技术支持和答疑!!!
各种系统编程和并行编程作业实验C和C++源码(含任务管理、进程间通信、并行算法等).zip
各种系统编程和并行编程作业实验C和C++源码(含任务管理、进程间通信、并行算法等)
这个项目是一个系统与并行编程的作业。它包含了多个作业,涉及系统编程和并行编程的相关内容。
主要功能点
包含多个作业,涉及系统编程和并行编程的相关内容
作业涵盖了各种系统编程和并行编程的主题,如任务管理、进程间通信、并行算法等
技术栈
C++
C
CUDA
CMake
【特别强调】
1、csdn上资源保证是完整最新,会不定期更新优化;
2、请用自己的账号在csdn官网下载,若通过第三方代下,博主不对您下载的资源作任何保证,且不提供任何形式的技术支持和答疑!!!
立体匹配算法实现-基于C++和OpenCV3.1实现半全局匹配SGM算法完整源码.zip
立体匹配算法实现-基于C++和OpenCV3.1实现半全局匹配SGM算法完整源码.zip
[项目介绍]
经典的立体匹配算法 - 半全局匹配(Semi-Global Matching, SGM)的完整实现。它兼顾了效率和效果,在立体匹配领域应用广泛,引用量超过4000次。该项目代码规范,注释清晰,并配有博客教学,非常适合学习和使用。
主要功能点
实现了SGM算法的核心功能,包括初始化、匹配和重置等公共函数。
提供了代价计算、代价聚合、视差优化和视差填充等关键步骤的实现。
支持Windows 10和Visual Studio 2015/2019环境,可方便移植到Linux平台。
技术栈
C++语言实现
依赖OpenCV 3.1.0第三方库
多视几何三维重建算法库-用于3D计算机视觉和结构从运动(SfM).zip
多视几何三维重建算法库-用于3D计算机视觉和结构从运动(SfM)
多视图几何库,用于3D计算机视觉和结构从运动(SfM)。它提供了一个端到端的图像3D重建框架,包括库、二进制文件和管道。
主要功能点
提供图像操作、特征描述和匹配、特征跟踪、相机模型、多视图几何、鲁棒估计、结构从运动算法等功能
提供多个二进制文件,可用于场景初始化、特征检测和匹配、结构从运动重建等任务
支持在Android、iOS、Linux、macOS和Windows上运行
技术栈
主要使用C++开发
使用了多种计算机视觉和图像处理算法
基于TensorFlow2的图像分类模型训练预测项目(支持ResNet和MobileNet等主干网络,热力图生成、可视化模型).zip
基于TensorFlow2的图像分类模型训练预测项目(支持ResNet和MobileNet等主干网络,热力图生成、可视化模型).zip
基于TensorFlow 2的图像分类模型。它提供了图像分类、热力图生成、模型评估等功能。该项目可以用于医疗影像分类等应用场景。
主要功能点
支持使用ResNet和MobileNet等主干网络进行图像分类
提供热力图生成功能,可视化模型对图像的关注区域
支持模型AUC ROC和Mask贡献率的评估
提供数据预处理、模型训练、预测等完整的工作流程
技术栈
Python
TensorFlow 2
OpenCV
Matplotlib
资源内含有详细的项目操作说明文档
基于深度学习YOLOv9实现道路红绿灯行人车辆(8类)识别检测系统python源码+详细教程+模型+数据集+评估指标曲线.zip
【使用教程】
一、环境配置
1、建议下载anaconda和pycharm
在anaconda中配置好环境,然后直接导入到pycharm中,在pycharm中运行项目
anaconda和pycharm安装及环境配置参考网上博客,有很多博主介绍
2、在anacodna中安装requirements.txt中的软件包
命令为:pip install -r requirements.txt
或者改成清华源后再执行以上命令,这样安装要快一些
软件包都安装成功后才算成功
3、安装好软件包后,把anaconda中对应的python导入到pycharm中即可(不难,参考网上博客)
二、环境配置好后,开始训练(也可以训练自己数据集)
1、数据集准备
需要准备yolo格式的目标检测数据集,如果不清楚yolo数据集格式,或者有其他数据训练需求,请看博主yolo格式各种数据集集合链接:https://blog.csdn.net/DeepLearning_/article/details/127276492
更多详情介绍,见资源内的项目说明
基于机器学习电信号EMG训练分类模型控制仿生手控制系统(matlab-simulink实现).zip
基于机器学习电信号EMG训练分类模型控制仿生手控制系统(matlab_simulink实现).zip
这个项目是一个使用机器学习技术控制仿生手的系统。它包括使用肌电信号(EMG)训练分类模型,并将其应用于仿真器中模拟仿生手的控制。
主要功能点
加载和处理EMG信号数据
训练EMG信号分类模型
在Simulink中创建仿生手控制仿真模型
技术栈
MATLAB
Simulink
【特别强调】
1、csdn上资源保证是完整最新,会不定期更新优化;
2、如果您不是用自己账号在csdn官方下载,而通过第三方代下,博主不对您下载的资源作任何保证,且不提供任何形式的技术支持和答疑!!!
毕设新项目基于Flask+OpenCV+Python得在线课堂学生疲劳检测系统应用程序含GUI界面+使用说明.zip
基于Flask+OpenCV+Python得在线课堂学生疲劳检测系统应用程序含GUI界面+使用说明.zip
这是一个基于 Flask 的 Python 应用程序,用于检测在线课堂期间的疲劳。该项目提供了一个简单的界面,可以检测用户的疲劳程度,并生成相关报告。
主要功能点
实时检测用户的疲劳状态
生成详细的疲劳报告,包括眨眼次数等指标
提供每日疲劳提示,帮助用户保持良好的学习状态
技术栈
Python
Flask
OpenCV
dlib
imutils
scipy
【特别强调】
1、csdn上资源保证是完整最新,会不定期更新优化;
2、如果您不是用自己账号在csdn官方下载,而通过第三方代下,博主不对您下载的资源作任何保证,且不提供任何形式的技术支持和答疑!!!
bsddb3-6.2.4.tar.gz
bsddb3-6.2.4.tar.gz
bsddb3-6.2.0.zip
bsddb3-6.2.0.zip
bsddb3-6.2.0.tar.gz
bsddb3-6.2.0.tar.gz
bsddb3-6.2.2.tar.gz
bsddb3-6.2.2.tar.gz
bsddb3-6.2.1.zip
bsddb3-6.2.1.zip
bsddb3-6.2.1.tar.gz
bsddb3-6.2.1.tar.gz
bsddb3-6.2.3.tar.gz
bsddb3-6.2.3.tar.gz
python基于降水和洪水流量插值的洪水预测建模项目源码(含数据集+数据处理+模拟结果及全部资料).zip
python基于降水和洪水流量插值的洪水预测建模项目源码(含数据集+数据处理+模拟结果及全部资料)
【项目简介】
该项目主要围绕洪水预测相关方法展开,运用多种数据处理技术对洪水相关数据进行处理和分析,以实现更准确的洪水预测,具体包含多个数据处理脚本和相关文件夹
洪水流量插值功能(洪水流量插值.py)
此脚本主要处理洪水流量数据的插值。它会读取指定文件夹(C:/aaUserProgram/ArcGIS10.8/Project/shuikexue/数据预处理/洪水事件/新建文件夹)下的所有 CSV 文件。对于每个文件,先将其中的 “时间” 列转换为datetime格式并设为索引,接着按索引排序,然后创建一个包含从最早时间到最晚时间每小时的DateTimeIndex,将数据重新索引到这个新的时间索引上,使用线性插值方法填充缺失值,最后将插值后的结果保存到另一个指定文件夹(C:/aaUserProgram/ArcGIS10.8/Project/shuikexue/数据预处理/洪水事件插值结果)中,文件名会加上 “- 插值结果 gai.csv” 后缀。
降水筛选功能(降水筛选.py)
更多见项目
基于改进的U-Net、ConvLSTM和ISAM4VP三种算法进行海洋要素智能预测源码(vue+flask搭建前后端系统).zip
基于改进的U-Net、ConvLSTM和ISAM4VP三种算法进行海洋要素智能预测源码(vue+flask搭建前后端系统).zip
【项目介绍】
使用了U-Net、ConvLSTM和ISAM4VP三种算法进行海洋要素预测,并最终采用ISAM4VP作为主要模型,分别训练了预测浪高、盐度、海温、海流和海风五种海洋要素的模型。该系统使用Vue和Flask搭建前后端,并使用D3.js进行海洋预报数据可视化,提供用户友好的交互界面。
主要功能
使用多种算法进行海洋要素预测,并对比精度后选择最优模型
分别训练预测浪高、盐度、海温、海流和海风等五种海洋要素的模型
使用Vue和Flask搭建前后端系统,提供可视化界面
使用D3.js进行海洋预报数据可视化,增强用户交互体验
技术栈
前端: Vue.js, D3.js
后端: Flask
数据处理: Python, 机器学习算法
地图服务: 天地图
【运行环境】
frontend
运行平台: windows 10
运行环境:node.js >= v18.15 npm >= 9.5.0
backend
运行平台: window
基于Poco库的C++伺服系统代码模板项目(开发者只需要实现设备类接口和请求处理逻辑即可).zip
基于Poco库的C++伺服系统代码模板项目(开发者只需要实现设备类接口和请求处理逻辑即可).zip
[项目介绍]
基于Poco库的C++伺服系统代码模板。该项目主要包含TCP通信架构和WebSocket通信架构,同时还集成了基于cpp-httplib的HTTP客户端。该项目可以作为开发伺服系统的基础框架使用。
主要功能点
提供基于TCP和WebSocket的通信架构
集成基于cpp-httplib的HTTP客户端
提供伺服系统的代码模板,开发者只需要实现设备类接口和请求处理逻辑即可
技术栈
C++
Poco库
cpp-httplib
主要依赖Poco库的C++伺服系统代码模板,最后将设
备类接口写出、请求处理过程写到common/proc.cpp中的router中即可完成对应的设备伺服系统
changelog
0.0.1 编写基于tcp的通信架构 0.0.2 将websocket加入到架构中,同时加入基于cpp-httplib的httpclient, 基于cpp-httplib的httpServer可以后续在实际的工程中加入,但是一般cpp的工程不会出现httpServer的模式
2025毕设缺陷检测新项目-基于python深度学习的热轧带钢表面缺陷自动检测系统+模型+数据集+运行说明.zip
2025毕设新项目-基于python深度学习的热轧带钢表面缺陷自动检测系统+模型+数据集+运行说明.zip
【项目介绍】
1、资源含热轧带钢表面缺陷数据集,yolo格式、6类缺陷,分别是轧制氧化皮(RS),斑块(Pa),开裂(Cr),点蚀表面( PS),内含物(In)和划痕(Sc)
2、含有训练好的模型文件
3、使用的是深度学习技术,CNN网络,目标检测算法
4、含有项目运行说明,pyqt5开发的GUI界面,方便配置,操作简单。
【特别强调】
1、csdn上资源保证是完整最新,会不定期更新优化;
2、请用自己的账号在csdn官网下载,若通过第三方代下,博主不对您下载的资源作任何保证,且不提供任何形式的技术支持和答疑!!!
适用yolo全系列算法-钢板表面缺陷数据集NEU-DET(含yolo格式txt标签、voc格式xml标签).zip
适用yolo全系列算法-钢板表面缺陷数据集NEU-DET(含yolo格式txt标签、voc格式xml标签
【数据集说明】
收集了热轧钢带的六种典型表面缺陷,即轧制氧化皮(RS),斑块(Pa),开裂(Cr),点蚀表面( PS),内含物(In)和划痕(Sc)。
包含yolo格式标签txt、voc格式xml文件
yolov3、yolov4、到yolov11,全系列算法可直接使用,高map和精确度
适用于全系列YOLO算法的危险驾驶行为(打哈欠、抽烟、打电话)数据集6499张+yolo格式标签(可数据增强).zip
适用于全系列YOLO算法的危险驾驶行为(打哈欠、抽烟、打电话)数据集6499张+yolo格式标签(可数据增强)
【数据集说明】
1、数据集为本人实际落地dms产品项目所用,算法已移植到嵌入式产品,效果不错
2、数据集含4类,打哈欠、打电话(玩手机)、抽烟、人脸
3、数据已经标注好,为yolo格式标签(txt),如需其他格式,可私信博主,帮助转换
4、数据未作数据增强,可以自己再次做数据增强,训练实验等
5、数据集质量绝对可靠,从不上传垃圾骗人数据,请放心下载使用!
【特别强调】
1、csdn上资源保证是完整最新,会不定期更新优化;
2、请用自己的账号在csdn官网下载,若通过第三方代下,博主不对您下载的资源作任何保证,且不提供任何形式的技术支持和答疑!!!
基于Keras+双向LSTM模型进行正常和病理性步态分类源码含27人步态数据+模型.zip
基于Keras+双向LSTM模型进行正常和病理性步态分类源码含27人步态数据+模型.zip
【项目说明】
使用Keras顺序模型进行正常和病理性步态分类的简单示例。它包含了一个双向LSTM模型,用于分类正常步态和两种病理性步态(膝关节僵硬和模拟跛行)。该项目提供了一个包含27个人步态数据的数据集,并提供了处理和加载数据的代码示例。
主要功能点
使用双向LSTM模型进行正常和病理性步态分类
提供包含27个人步态数据的数据集
提供数据处理和加载的代码示例
技术栈
Python
Keras
Jupyter Notebook
深度学习课设-基于resnet网络实现鼠标手写数字识别源码+数据集+模型+运行说明(带GUI界面,直接界面上手写).zip
深度学习课设-基于resnet网络实现鼠标手写数字识别源码+数据集+模型+运行说明(带GUI界面,直接界面上手写).zip
【项目说明】
识别手写数字图像。
主要功能点
基于ResNet的手写数字识别
支持自定义训练数据集
提供了训练和预测的主要代码
技术栈
Python
PyTorch
ResNet
含有数据集下载链接、训练好的模型、运行教程。项目带有GUI界面,可直接鼠标手写,然后输出识别结果,非常容易部署运行。可借鉴学习,可在此基础二次开发,很不错的项目,也可以做毕设用。
【特别强调】
1、csdn上资源保证是完整最新,会不定期更新优化;
2、请用自己的账号在csdn官网下载,若通过第三方代下,博主不对您下载的资源作任何保证,且不提供任何形式的技术支持和答疑!!!
Python+Flask架构基于Zero-Shot和监督学习结合方法实现多域多模型的机器生成文本检测系统+操作教程.zip
Python+Flask架构基于Zero-Shot和监督学习结合方法实现多域多模型的机器生成文本检测系统+操作教程.zip
【项目说明】
项目旨在实现对机器生成文本的检测。通过Zero-Shot和监督学习结合的方法,星鉴可以准确高效地区分多领域多模型的人类文本和机器生成文本。本项目适用于需要识别AI生成内容的各类应用场景。
系统架构
本项目基于Flask架构的前后端交互设计,用户通过前端页面交互,后端处理前端返回的文本或者文件,并将结果返回前端展示。
系统功能
系统支持中英文两种语言检测,同时支持用户上传文件进行检测,文件格式支持包括.txt,.docx,.pdf
功能列表 功能描述
文本检测功能 用户在客户端输入一段文本,检测完成后会返回一个这段文本由机器生成的概率
文件检测功能 长文本用户可以上传 PDF,DOCX 和 TXT 格式的文件,检测完成后会返回标注过的文件
深度文本分析 文本检测完成会告知用户各个段落由机器生成的概率,并标识各个成分的占比
文件标注功能 根据不同段落评估概率,标注高亮,并在侧面标注生成概率(PDF,DOCX)或直接标注概率(TXT)
网络入侵检测信息安全大作业-基于模式匹配的入侵检测系统源码+运行教程(检测SQL注入、跨站脚本web攻击等).zip
【项目说明】
基于模式匹配的入侵检测系统。该系统可以检测常见的Web应用程序攻击,如SQL注入、跨站脚本攻击等。
主要功能点
实现了暴力匹配、KMP算法和Boyer-Moore算法三种字符串匹配算法,并进行了性能测试。
提供了图形化界面,用户可以方便地使用该系统。
增加了合并报文攻击的检测功能。
技术栈
C++
GTK+ 3.0
CMake
【项目运行方法】
mkdir build
cd build
cmake ..
make
sudo ./main ../patterns/patternfile BM #指定攻击算法为BM(可以改成其他)
【特别强调】
1、csdn上资源保证是完整最新,会不定期更新优化;
2、请用自己的账号在csdn官网下载,若通过第三方代下,博主不对您下载的资源作任何保证,且不提供任何形式的技术支持和答疑!!!
机器学习电力数据预测分析项目-基于XGBoost算法实现美国电力数据PJM分析预测python源码+数据集.zip
机器学习电力数据预测分析项目-基于XGBoost算法实现美国电力数据PJM分析预测python源码+数据集.zip
【项目资源介绍】
使用框架
XGBoost
XGBoost是经过优化的分布式梯度提升库,高效、灵活且可移植。它在Gradient Boosting框架下实现了机器学习算法。
XGBoost提供了并行树增强(也称为GBDT,GBM),可以快速准确地解决许多数据科学问题。
相同的代码在主要的分布式环境(Hadoop,SGE,MPI)上运行,并且可以解决数十亿个示例以外的问题。
使用了美国电力数据PJM作为数据源,并采用了XGBoost算法进行预测分析。该项目旨在对电力需求进行预测,为电力公司和投资者提供决策支持。
Main Function Points
数据预处理和分析
基于XGBoost算法的电力需求预测
预测结果分析和洞见
【特别强调】
1、csdn上资源保证是完整最新,会不定期更新优化;
2、请用自己的账号在csdn官网下载,若通过第三方代下,博主不对您下载的资源作任何保证,且不提供任何形式的技术支持和答疑!!!
毕设新项目基于卷积神经网络的图像和视频风格迁移程序源码+模型+运行安装指南.zip
项目介绍:
基于卷积神经网络的图像和视频风格迁移应用程序。它可以将输入的图像或视频应用不同的艺术风格,生成新的图像或视频。
主要功能点
图像风格迁移:用户可以上传图像,选择不同的艺术风格,生成新的图像。
视频风格迁移:用户可以上传视频,选择不同的艺术风格,生成新的视频。
模型训练:用户可以使用自己的数据集和风格图像,训练新的风格迁移模型。
技术栈
Python
PyTorch
OpenCV
NumPy
Flask
程序运行环境配置安装指南
1.安装使用PyCharm Community Edition 2022.3.3
2.安装Python
3.安装Anaconda
4.安装PyTorch,opencv,numpy,av,torchvision,ffmpeg,skvideo,pillow,os,tqdm,numpy
5.启动项目
打开cmd,找到对应的项目目录,在anaconda运行python app.py ,后访问 http://127.0.0.1:5000 可打开网页。
6.训练模型
运行python train.py --dataset_path data/
基于PyTorch实现神经网络图像风格实时迁移和迭代式非实时风格迁移源码+文档说明+模型.zip
基于PyTorch实现神经网络图像风格实时迁移和迭代式非实时风格迁移源码+文档说明+模型
【项目介绍】
实时风格迁移
迭代式的(非实时)风格迁移
图像风格迁移是深度学习中的一项有趣应用,它结合了两幅图像的内容和风格,创造出一幅新的图像。在内容上保留了原始图像的特征,还在风格上融合了另一幅图像的艺术特质。
主要功能点
实现了基于迭代优化的非实时风格迁移
实现了基于生成网络的实时风格迁移
提供了一些基本的使用示例
技术栈
PyTorch
卷积神经网络
图像生成
使用方法
提供了一些基本的使用示例,详细参数请见源代码或使用--help 命令获取
一、非实时风格迁移:
可以将输入内容图像和风格图像,即可完成风格迁移,运行时每一个epoch完成后会将生成的图像保存至output_dir
二、实时风格迁移:
模型训练:
这里提供了两个训练好的模型
一次性处理若干个图像:
对视频进行风格迁移:
原理介绍
我们需要对一个图像的内容和风格进行量化,具体方法如下: 使用预训练的深度卷积神经网络(例如 VGG-19)作为特征提取器。在这里,我们主要使用网络中间的一些卷积层的输出,而忽略了用
python深度学习基于yolov9道路损坏破损检测系统源码+超详细教程+模型+指标曲线.zip
【使用教程】
一、环境配置
1、建议下载anaconda和pycharm
在anaconda中配置好环境,然后直接导入到pycharm中,在pycharm中运行项目
anaconda和pycharm安装及环境配置参考网上博客,有很多博主介绍
2、在anacodna中安装requirements.txt中的软件包
命令为:pip install -r requirements.txt
或者改成清华源后再执行以上命令,这样安装要快一些
软件包都安装成功后才算成功
3、安装好软件包后,把anaconda中对应的python导入到pycharm中即可(不难,参考网上博客)
二、环境配置好后,开始训练(也可以训练自己数据集)
1、数据集准备
需要准备yolo格式的目标检测数据集,如果不清楚yolo数据集格式,或者有其他数据训练需求,请看博主yolo格式各种数据集集合链接:https://blog.csdn.net/DeepLearning_/article/details/127276492
里面涵盖了上百种yolo数据集,且在不断更新,基本都是实际项目使用。来自于网上收集、实际场景采集制作等,自己使用labelimg标注工具标注的。数据集质量绝对有保证!
本项目所使用的数据集,见csdn该资源下载页面中的介绍栏,里面有对应的下载链接,下载后可直接使用。
2、数据准备好,开始修改配置文件
参考代码中data文件夹下的banana_ripe.yaml,可以自己新建一个不同名称的yaml文件
train:训练集的图片路径
val:验证集的图片路径
names:
0: very-ripe 类别1
1: immature 类别2
2: mid-ripe 类别3
格式按照banana_ripe.yaml照葫芦画瓢就行,不需要过多参考网上的
3、修改train_dual.py中的配置参数,开始训练模型
方式一:
修改点:
a.--weights参数,填入'yolov9-s.pt',博主训练的是yolov9-s,根据自己需求可自定义
b.--cfg参数,填入 models/detect/yolov9-c.yaml
c.--data参数,填入data/banana_ripe.yaml,可自定义自己的yaml路径
d.--hyp参数,填入hyp.scratch-high.yaml
e.--epochs参数,填入100或者200都行,根据自己的数据集可改
f.--batch-size参数,根据自己的电脑性能(显存大小)自定义修改
g.--device参数,一张显卡的话,就填0。没显卡,使用cpu训练,就填cpu
h.--close-mosaic参数,填入15
以上修改好,直接pycharm中运行train_dual.py开始训练
方式二:
命令行方式,在pycharm中的终端窗口输入如下命令,可根据自己情况修改参数
官方示例:python train_dual.py --workers 8 --device 0 --batch 16 --data data/coco.yaml --img 640 --cfg models/detect/yolov9-c.yaml --weights '' --name yolov9-c --hyp hyp.scratch-high.yaml --min-items 0 --epochs 500 --close-mosaic 15
训练完会在runs/train文件下生成对应的训练文件及模型,后续测试可以拿来用。
三、测试
1、训练完,测试
修改detect_dual.py中的参数
--weights,改成上面训练得到的best.pt对应的路径
--source,需要测试的数据图片存放的位置,代码中的test_imgs
--conf-thres,置信度阈值,自定义修改
--iou-thres,iou阈值,自定义修改
其他默认即可
pycharm中运行detect_dual.py
在runs/detect文件夹下存放检测结果图片或者视频
【备注】
1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用!有问题请及时沟通交流。
2、适用人群:计算机相关专业(如计科、信息安全、数据科学与大数据技术、人工智能、通信、物联网、自动化、电子信息等)在校学生、专业老师或者企业员工下载使用。
【特别强调】
1、csdn上资源保证是完整最新,会不定期更新优化;
2、请用自己的账号在csdn官网下载,若通过第三方代下,博主不对您下载的资源作任何保证,且不提供任何形式的技术支持和答疑!!!
深度学习二维码识别检测-基于yolov9算法实现二维码检测python源码(含详细运行教程+模型+指标曲线).zip
【使用教程】
一、环境配置
1、建议下载anaconda和pycharm
在anaconda中配置好环境,然后直接导入到pycharm中,在pycharm中运行项目
anaconda和pycharm安装及环境配置参考网上博客,有很多博主介绍
2、在anacodna中安装requirements.txt中的软件包
命令为:pip install -r requirements.txt
或者改成清华源后再执行以上命令,这样安装要快一些
软件包都安装成功后才算成功
3、安装好软件包后,把anaconda中对应的python导入到pycharm中即可(不难,参考网上博客)
二、环境配置好后,开始训练(也可以训练自己数据集)
1、数据集准备
需要准备yolo格式的目标检测数据集,如果不清楚yolo数据集格式,或者有其他数据训练需求,请看博主yolo格式各种数据集集合链接:https://blog.csdn.net/DeepLearning_/article/details/127276492
里面涵盖了上百种yolo数据集,且在不断更新,基本都是实际项目使用。来自于网上收集、实际场景采集制作等,自己使用labelimg标注工具标注的。数据集质量绝对有保证!
本项目所使用的数据集,见csdn该资源下载页面中的介绍栏,里面有对应的下载链接,下载后可直接使用。
2、数据准备好,开始修改配置文件
参考代码中data文件夹下的banana_ripe.yaml,可以自己新建一个不同名称的yaml文件
train:训练集的图片路径
val:验证集的图片路径
names:
0: very-ripe 类别1
1: immature 类别2
2: mid-ripe 类别3
格式按照banana_ripe.yaml照葫芦画瓢就行,不需要过多参考网上的
3、修改train_dual.py中的配置参数,开始训练模型
方式一:
修改点:
a.--weights参数,填入'yolov9-s.pt',博主训练的是yolov9-s,根据自己需求可自定义
b.--cfg参数,填入 models/detect/yolov9-c.yaml
c.--data参数,填入data/banana_ripe.yaml,可自定义自己的yaml路径
d.--hyp参数,填入hyp.scratch-high.yaml
e.--epochs参数,填入100或者200都行,根据自己的数据集可改
f.--batch-size参数,根据自己的电脑性能(显存大小)自定义修改
g.--device参数,一张显卡的话,就填0。没显卡,使用cpu训练,就填cpu
h.--close-mosaic参数,填入15
以上修改好,直接pycharm中运行train_dual.py开始训练
方式二:
命令行方式,在pycharm中的终端窗口输入如下命令,可根据自己情况修改参数
官方示例:python train_dual.py --workers 8 --device 0 --batch 16 --data data/coco.yaml --img 640 --cfg models/detect/yolov9-c.yaml --weights '' --name yolov9-c --hyp hyp.scratch-high.yaml --min-items 0 --epochs 500 --close-mosaic 15
训练完会在runs/train文件下生成对应的训练文件及模型,后续测试可以拿来用。
三、测试
1、训练完,测试
修改detect_dual.py中的参数
--weights,改成上面训练得到的best.pt对应的路径
--source,需要测试的数据图片存放的位置,代码中的test_imgs
--conf-thres,置信度阈值,自定义修改
--iou-thres,iou阈值,自定义修改
其他默认即可
pycharm中运行detect_dual.py
在runs/detect文件夹下存放检测结果图片或者视频
【备注】
1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用!有问题请及时沟通交流。
2、适用人群:计算机相关专业(如计科、信息安全、数据科学与大数据技术、人工智能、通信、物联网、自动化、电子信息等)在校学生、专业老师或者企业员工下载使用。
【特别强调】
1、csdn上资源保证是完整最新,会不定期更新优化;
2、请用自己的账号在csdn官网下载,若通过第三方代下,博主不对您下载的资源作任何保证,且不提供任何形式的技术支持和答疑!!!
智慧工地毕设-基于yolov9实现工人安全帽反光衣穿戴检测系统源码+详细运行教程+模型+指标曲线.zip
【使用教程】
一、环境配置
1、建议下载anaconda和pycharm
在anaconda中配置好环境,然后直接导入到pycharm中,在pycharm中运行项目
anaconda和pycharm安装及环境配置参考网上博客,有很多博主介绍
2、在anacodna中安装requirements.txt中的软件包
命令为:pip install -r requirements.txt
或者改成清华源后再执行以上命令,这样安装要快一些
软件包都安装成功后才算成功
3、安装好软件包后,把anaconda中对应的python导入到pycharm中即可(不难,参考网上博客)
二、环境配置好后,开始训练(也可以训练自己数据集)
1、数据集准备
需要准备yolo格式的目标检测数据集,如果不清楚yolo数据集格式,或者有其他数据训练需求,请看博主yolo格式各种数据集集合链接:https://blog.csdn.net/DeepLearning_/article/details/127276492
里面涵盖了上百种yolo数据集,且在不断更新,基本都是实际项目使用。来自于网上收集、实际场景采集制作等,自己使用labelimg标注工具标注的。数据集质量绝对有保证!
本项目所使用的数据集,见csdn该资源下载页面中的介绍栏,里面有对应的下载链接,下载后可直接使用。
2、数据准备好,开始修改配置文件
参考代码中data文件夹下的banana_ripe.yaml,可以自己新建一个不同名称的yaml文件
train:训练集的图片路径
val:验证集的图片路径
names:
0: very-ripe 类别1
1: immature 类别2
2: mid-ripe 类别3
格式按照banana_ripe.yaml照葫芦画瓢就行,不需要过多参考网上的
3、修改train_dual.py中的配置参数,开始训练模型
方式一:
修改点:
a.--weights参数,填入'yolov9-s.pt',博主训练的是yolov9-s,根据自己需求可自定义
b.--cfg参数,填入 models/detect/yolov9-c.yaml
c.--data参数,填入data/banana_ripe.yaml,可自定义自己的yaml路径
d.--hyp参数,填入hyp.scratch-high.yaml
e.--epochs参数,填入100或者200都行,根据自己的数据集可改
f.--batch-size参数,根据自己的电脑性能(显存大小)自定义修改
g.--device参数,一张显卡的话,就填0。没显卡,使用cpu训练,就填cpu
h.--close-mosaic参数,填入15
以上修改好,直接pycharm中运行train_dual.py开始训练
方式二:
命令行方式,在pycharm中的终端窗口输入如下命令,可根据自己情况修改参数
官方示例:python train_dual.py --workers 8 --device 0 --batch 16 --data data/coco.yaml --img 640 --cfg models/detect/yolov9-c.yaml --weights '' --name yolov9-c --hyp hyp.scratch-high.yaml --min-items 0 --epochs 500 --close-mosaic 15
训练完会在runs/train文件下生成对应的训练文件及模型,后续测试可以拿来用。
三、测试
1、训练完,测试
修改detect_dual.py中的参数
--weights,改成上面训练得到的best.pt对应的路径
--source,需要测试的数据图片存放的位置,代码中的test_imgs
--conf-thres,置信度阈值,自定义修改
--iou-thres,iou阈值,自定义修改
其他默认即可
pycharm中运行detect_dual.py
在runs/detect文件夹下存放检测结果图片或者视频
【备注】
1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用!有问题请及时沟通交流。
2、适用人群:计算机相关专业(如计科、信息安全、数据科学与大数据技术、人工智能、通信、物联网、自动化、电子信息等)在校学生、专业老师或者企业员工下载使用。
【特别强调】
1、csdn上资源保证是完整最新,会不定期更新优化;
2、请用自己的账号在csdn官网下载,若通过第三方代下,博主不对您下载的资源作任何保证,且不提供任何形式的技术支持和答疑!!!
深度学习交通信号灯识别-基于yolov9实现道路红灯绿灯黄灯识别系统源码+详细运行教程+模型+指标曲线.zip
【使用教程】
一、环境配置
1、建议下载anaconda和pycharm
在anaconda中配置好环境,然后直接导入到pycharm中,在pycharm中运行项目
anaconda和pycharm安装及环境配置参考网上博客,有很多博主介绍
2、在anacodna中安装requirements.txt中的软件包
命令为:pip install -r requirements.txt
或者改成清华源后再执行以上命令,这样安装要快一些
软件包都安装成功后才算成功
3、安装好软件包后,把anaconda中对应的python导入到pycharm中即可(不难,参考网上博客)
二、环境配置好后,开始训练(也可以训练自己数据集)
1、数据集准备
需要准备yolo格式的目标检测数据集,如果不清楚yolo数据集格式,或者有其他数据训练需求,请看博主yolo格式各种数据集集合链接:https://blog.csdn.net/DeepLearning_/article/details/127276492
里面涵盖了上百种yolo数据集,且在不断更新,基本都是实际项目使用。来自于网上收集、实际场景采集制作等,自己使用labelimg标注工具标注的。数据集质量绝对有保证!
本项目所使用的数据集,见csdn该资源下载页面中的介绍栏,里面有对应的下载链接,下载后可直接使用。
2、数据准备好,开始修改配置文件
参考代码中data文件夹下的banana_ripe.yaml,可以自己新建一个不同名称的yaml文件
train:训练集的图片路径
val:验证集的图片路径
names:
0: very-ripe 类别1
1: immature 类别2
2: mid-ripe 类别3
格式按照banana_ripe.yaml照葫芦画瓢就行,不需要过多参考网上的
3、修改train_dual.py中的配置参数,开始训练模型
方式一:
修改点:
a.--weights参数,填入'yolov9-s.pt',博主训练的是yolov9-s,根据自己需求可自定义
b.--cfg参数,填入 models/detect/yolov9-c.yaml
c.--data参数,填入data/banana_ripe.yaml,可自定义自己的yaml路径
d.--hyp参数,填入hyp.scratch-high.yaml
e.--epochs参数,填入100或者200都行,根据自己的数据集可改
f.--batch-size参数,根据自己的电脑性能(显存大小)自定义修改
g.--device参数,一张显卡的话,就填0。没显卡,使用cpu训练,就填cpu
h.--close-mosaic参数,填入15
以上修改好,直接pycharm中运行train_dual.py开始训练
方式二:
命令行方式,在pycharm中的终端窗口输入如下命令,可根据自己情况修改参数
官方示例:python train_dual.py --workers 8 --device 0 --batch 16 --data data/coco.yaml --img 640 --cfg models/detect/yolov9-c.yaml --weights '' --name yolov9-c --hyp hyp.scratch-high.yaml --min-items 0 --epochs 500 --close-mosaic 15
训练完会在runs/train文件下生成对应的训练文件及模型,后续测试可以拿来用。
三、测试
1、训练完,测试
修改detect_dual.py中的参数
--weights,改成上面训练得到的best.pt对应的路径
--source,需要测试的数据图片存放的位置,代码中的test_imgs
--conf-thres,置信度阈值,自定义修改
--iou-thres,iou阈值,自定义修改
其他默认即可
pycharm中运行detect_dual.py
在runs/detect文件夹下存放检测结果图片或者视频
【备注】
1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用!有问题请及时沟通交流。
2、适用人群:计算机相关专业(如计科、信息安全、数据科学与大数据技术、人工智能、通信、物联网、自动化、电子信息等)在校学生、专业老师或者企业员工下载使用。
【特别强调】
1、csdn上资源保证是完整最新,会不定期更新优化;
2、请用自己的账号在csdn官网下载,若通过第三方代下,博主不对您下载的资源作任何保证,且不提供任何形式的技术支持和答疑!!!
监控场景玩手机检测-基于yolov9的员工玩手机识别检测系统python源码+详细运行教程+模型+指标曲线.zip
【使用教程】
一、环境配置
1、建议下载anaconda和pycharm
在anaconda中配置好环境,然后直接导入到pycharm中,在pycharm中运行项目
anaconda和pycharm安装及环境配置参考网上博客,有很多博主介绍
2、在anacodna中安装requirements.txt中的软件包
命令为:pip install -r requirements.txt
或者改成清华源后再执行以上命令,这样安装要快一些
软件包都安装成功后才算成功
3、安装好软件包后,把anaconda中对应的python导入到pycharm中即可(不难,参考网上博客)
二、环境配置好后,开始训练(也可以训练自己数据集)
1、数据集准备
需要准备yolo格式的目标检测数据集,如果不清楚yolo数据集格式,或者有其他数据训练需求,请看博主yolo格式各种数据集集合链接:https://blog.csdn.net/DeepLearning_/article/details/127276492
里面涵盖了上百种yolo数据集,且在不断更新,基本都是实际项目使用。来自于网上收集、实际场景采集制作等,自己使用labelimg标注工具标注的。数据集质量绝对有保证!
本项目所使用的数据集,见csdn该资源下载页面中的介绍栏,里面有对应的下载链接,下载后可直接使用。
2、数据准备好,开始修改配置文件
参考代码中data文件夹下的banana_ripe.yaml,可以自己新建一个不同名称的yaml文件
train:训练集的图片路径
val:验证集的图片路径
names:
0: very-ripe 类别1
1: immature 类别2
2: mid-ripe 类别3
格式按照banana_ripe.yaml照葫芦画瓢就行,不需要过多参考网上的
3、修改train_dual.py中的配置参数,开始训练模型
方式一:
修改点:
a.--weights参数,填入'yolov9-s.pt',博主训练的是yolov9-s,根据自己需求可自定义
b.--cfg参数,填入 models/detect/yolov9-c.yaml
c.--data参数,填入data/banana_ripe.yaml,可自定义自己的yaml路径
d.--hyp参数,填入hyp.scratch-high.yaml
e.--epochs参数,填入100或者200都行,根据自己的数据集可改
f.--batch-size参数,根据自己的电脑性能(显存大小)自定义修改
g.--device参数,一张显卡的话,就填0。没显卡,使用cpu训练,就填cpu
h.--close-mosaic参数,填入15
以上修改好,直接pycharm中运行train_dual.py开始训练
方式二:
命令行方式,在pycharm中的终端窗口输入如下命令,可根据自己情况修改参数
官方示例:python train_dual.py --workers 8 --device 0 --batch 16 --data data/coco.yaml --img 640 --cfg models/detect/yolov9-c.yaml --weights '' --name yolov9-c --hyp hyp.scratch-high.yaml --min-items 0 --epochs 500 --close-mosaic 15
训练完会在runs/train文件下生成对应的训练文件及模型,后续测试可以拿来用。
三、测试
1、训练完,测试
修改detect_dual.py中的参数
--weights,改成上面训练得到的best.pt对应的路径
--source,需要测试的数据图片存放的位置,代码中的test_imgs
--conf-thres,置信度阈值,自定义修改
--iou-thres,iou阈值,自定义修改
其他默认即可
pycharm中运行detect_dual.py
在runs/detect文件夹下存放检测结果图片或者视频
【备注】
1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用!有问题请及时沟通交流。
2、适用人群:计算机相关专业(如计科、信息安全、数据科学与大数据技术、人工智能、通信、物联网、自动化、电子信息等)在校学生、专业老师或者企业员工下载使用。
【特别强调】
1、csdn上资源保证是完整最新,会不定期更新优化;
2、请用自己的账号在csdn官网下载,若通过第三方代下,博主不对您下载的资源作任何保证,且不提供任何形式的技术支持和答疑!!!
驾驶员视角交通标识检测-基于yolov9实现道路交通标志标识检测系统源码+详细运行教程+模型+指标曲线.zip
【使用教程】
一、环境配置
1、建议下载anaconda和pycharm
在anaconda中配置好环境,然后直接导入到pycharm中,在pycharm中运行项目
anaconda和pycharm安装及环境配置参考网上博客,有很多博主介绍
2、在anacodna中安装requirements.txt中的软件包
命令为:pip install -r requirements.txt
或者改成清华源后再执行以上命令,这样安装要快一些
软件包都安装成功后才算成功
3、安装好软件包后,把anaconda中对应的python导入到pycharm中即可(不难,参考网上博客)
二、环境配置好后,开始训练(也可以训练自己数据集)
1、数据集准备
需要准备yolo格式的目标检测数据集,如果不清楚yolo数据集格式,或者有其他数据训练需求,请看博主yolo格式各种数据集集合链接:https://blog.csdn.net/DeepLearning_/article/details/127276492
里面涵盖了上百种yolo数据集,且在不断更新,基本都是实际项目使用。来自于网上收集、实际场景采集制作等,自己使用labelimg标注工具标注的。数据集质量绝对有保证!
本项目所使用的数据集,见csdn该资源下载页面中的介绍栏,里面有对应的下载链接,下载后可直接使用。
2、数据准备好,开始修改配置文件
参考代码中data文件夹下的banana_ripe.yaml,可以自己新建一个不同名称的yaml文件
train:训练集的图片路径
val:验证集的图片路径
names:
0: very-ripe 类别1
1: immature 类别2
2: mid-ripe 类别3
格式按照banana_ripe.yaml照葫芦画瓢就行,不需要过多参考网上的
3、修改train_dual.py中的配置参数,开始训练模型
方式一:
修改点:
a.--weights参数,填入'yolov9-s.pt',博主训练的是yolov9-s,根据自己需求可自定义
b.--cfg参数,填入 models/detect/yolov9-c.yaml
c.--data参数,填入data/banana_ripe.yaml,可自定义自己的yaml路径
d.--hyp参数,填入hyp.scratch-high.yaml
e.--epochs参数,填入100或者200都行,根据自己的数据集可改
f.--batch-size参数,根据自己的电脑性能(显存大小)自定义修改
g.--device参数,一张显卡的话,就填0。没显卡,使用cpu训练,就填cpu
h.--close-mosaic参数,填入15
以上修改好,直接pycharm中运行train_dual.py开始训练
方式二:
命令行方式,在pycharm中的终端窗口输入如下命令,可根据自己情况修改参数
官方示例:python train_dual.py --workers 8 --device 0 --batch 16 --data data/coco.yaml --img 640 --cfg models/detect/yolov9-c.yaml --weights '' --name yolov9-c --hyp hyp.scratch-high.yaml --min-items 0 --epochs 500 --close-mosaic 15
训练完会在runs/train文件下生成对应的训练文件及模型,后续测试可以拿来用。
三、测试
1、训练完,测试
修改detect_dual.py中的参数
--weights,改成上面训练得到的best.pt对应的路径
--source,需要测试的数据图片存放的位置,代码中的test_imgs
--conf-thres,置信度阈值,自定义修改
--iou-thres,iou阈值,自定义修改
其他默认即可
pycharm中运行detect_dual.py
在runs/detect文件夹下存放检测结果图片或者视频
【备注】
1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用!有问题请及时沟通交流。
2、适用人群:计算机相关专业(如计科、信息安全、数据科学与大数据技术、人工智能、通信、物联网、自动化、电子信息等)在校学生、专业老师或者企业员工下载使用。
【特别强调】
1、csdn上资源保证是完整最新,会不定期更新优化;
2、请用自己的账号在csdn官网下载,若通过第三方代下,博主不对您下载的资源作任何保证,且不提供任何形式的技术支持和答疑!!!
基于python深度学习yolov9算法实现车轮检测源码+详细运行教程+模型+指标曲线.zip
【使用教程】
一、环境配置
1、建议下载anaconda和pycharm
在anaconda中配置好环境,然后直接导入到pycharm中,在pycharm中运行项目
anaconda和pycharm安装及环境配置参考网上博客,有很多博主介绍
2、在anacodna中安装requirements.txt中的软件包
命令为:pip install -r requirements.txt
或者改成清华源后再执行以上命令,这样安装要快一些
软件包都安装成功后才算成功
3、安装好软件包后,把anaconda中对应的python导入到pycharm中即可(不难,参考网上博客)
二、环境配置好后,开始训练(也可以训练自己数据集)
1、数据集准备
需要准备yolo格式的目标检测数据集,如果不清楚yolo数据集格式,或者有其他数据训练需求,请看博主yolo格式各种数据集集合链接:https://blog.csdn.net/DeepLearning_/article/details/127276492
里面涵盖了上百种yolo数据集,且在不断更新,基本都是实际项目使用。来自于网上收集、实际场景采集制作等,自己使用labelimg标注工具标注的。数据集质量绝对有保证!
本项目所使用的数据集,见csdn该资源下载页面中的介绍栏,里面有对应的下载链接,下载后可直接使用。
2、数据准备好,开始修改配置文件
参考代码中data文件夹下的banana_ripe.yaml,可以自己新建一个不同名称的yaml文件
train:训练集的图片路径
val:验证集的图片路径
names:
0: very-ripe 类别1
1: immature 类别2
2: mid-ripe 类别3
格式按照banana_ripe.yaml照葫芦画瓢就行,不需要过多参考网上的
3、修改train_dual.py中的配置参数,开始训练模型
方式一:
修改点:
a.--weights参数,填入'yolov9-s.pt',博主训练的是yolov9-s,根据自己需求可自定义
b.--cfg参数,填入 models/detect/yolov9-c.yaml
c.--data参数,填入data/banana_ripe.yaml,可自定义自己的yaml路径
d.--hyp参数,填入hyp.scratch-high.yaml
e.--epochs参数,填入100或者200都行,根据自己的数据集可改
f.--batch-size参数,根据自己的电脑性能(显存大小)自定义修改
g.--device参数,一张显卡的话,就填0。没显卡,使用cpu训练,就填cpu
h.--close-mosaic参数,填入15
以上修改好,直接pycharm中运行train_dual.py开始训练
方式二:
命令行方式,在pycharm中的终端窗口输入如下命令,可根据自己情况修改参数
官方示例:python train_dual.py --workers 8 --device 0 --batch 16 --data data/coco.yaml --img 640 --cfg models/detect/yolov9-c.yaml --weights '' --name yolov9-c --hyp hyp.scratch-high.yaml --min-items 0 --epochs 500 --close-mosaic 15
训练完会在runs/train文件下生成对应的训练文件及模型,后续测试可以拿来用。
三、测试
1、训练完,测试
修改detect_dual.py中的参数
--weights,改成上面训练得到的best.pt对应的路径
--source,需要测试的数据图片存放的位置,代码中的test_imgs
--conf-thres,置信度阈值,自定义修改
--iou-thres,iou阈值,自定义修改
其他默认即可
pycharm中运行detect_dual.py
在runs/detect文件夹下存放检测结果图片或者视频
【备注】
1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用!有问题请及时沟通交流。
2、适用人群:计算机相关专业(如计科、信息安全、数据科学与大数据技术、人工智能、通信、物联网、自动化、电子信息等)在校学生、专业老师或者企业员工下载使用。
【特别强调】
1、csdn上资源保证是完整最新,会不定期更新优化;
2、请用自己的账号在csdn官网下载,若通过第三方代下,博主不对您下载的资源作任何保证,且不提供任何形式的技术支持和答疑!!!