自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

实力派,无需多言!

【专注】深度学习、计算机视觉、自然语言处理、OpenCV方向研究,不限于目标识别检测、跟踪、图像分类、分割、场景理解、姿态估计、动作识别、视频分析、三维重建、迁移学习、强化学习、算法改进优化等。毕设、课设、比赛指导,公司实际项目开发!欢迎交流,相互学习!

  • 博客(443)
  • 资源 (569)
  • 收藏
  • 关注

原创 【人工智能毕设课设】基于YOLOv9实现的线下课堂学生上课状态识别检测系统(附项目源码和数据集下载)

在现代教育环境中,教师对于学生在课堂上的状态监控需求日益增加。传统的监控方式往往依赖于人工观察,不仅效率低下,而且难以做到全面覆盖。为了解决这个问题,我们基于YOLOv9(You Only Look Once version 9)开发了一个线下课堂学生上课状态识别检测系统。该系统能够自动识别学生的上课状态,包括注意力集中、打瞌睡、玩手机等行为,从而帮助教师更好地管理课堂。本文将详细介绍该系统的Python源码、运行教程、训练好的模型以及评估指标曲线,以便读者能够快速上手并应用于实际场景中。

2024-10-14 16:27:21 1522 6

原创 基于YOLOv8+PyQt5开发的行人过马路危险行为检测告警系统(附数据集和源码下载)

交通安全一直是一个备受关注的重要议题。每年都有大量的交通事故发生,其中很多都与行人在过马路时的危险行为有关。故我开发了一种基于YOLOv8的行人过马路危险行为检测告警系统。它能够快速准确地识别图像或视频中的行人,并判断他们是否存在危险行为。通过结合计算机视觉和深度学习技术,该系统能够实时监测行人在过马路时的行为,并及时发出警报,以提醒行人和驾驶员注意交通安全。提示:以下是本篇文章正文内容在本博客中,我们介绍了基于YOLOv8和PyQt5的行人过马路危险行为检测告警系统。

2023-08-13 10:00:00 4844 5

原创 使用Resnet网络对人脸图像分类识别出男女性别(包含数据集制作+训练+测试)

这两天有点忙,本打算昨天准备写这篇博客内容的,推迟到今天晚上。实际上,上午我已经把模型训练完了,准确率可以达到95%,考虑到用的台式机没有装显卡,所以使用的数据集一共只有340张。分布情况如下。【训练集】女性:150张;男性:150张【验证集】女性:20张;男性:20张数据集预览女性数据男性数据提示:以下是本篇文章正文内容,下面案例可供参考实际上很多可以修改,如loss选择、梯度下降方法、学习率、衰减率等等。

2022-11-19 23:27:31 7629 18

原创 基于RNN循环神经网络、LSTM、GRU和改进GRU空中目标意图识别实现(附源码+数据集+程序说明)

目标战术意图由一系列动作实现,因此目标状态呈现时序动态变化特征。针对目标意图识别问题的特点,本文是对基于循环神经网络进行意图识别的实现。现有的用于复杂环境下对目标意图识别方法主要有模板匹配、证据推理、贝叶斯网络和神经网络等。提示:以下是本篇文章正文内容,下面案例可供参考。

2022-11-10 23:29:27 2859 36

原创 100种目标检测数据集【voc格式yolo格式json格式coco格式】+YOLO系列算法源码及训练好的模型

本文介绍并分享了应用于各行业、各领域非常有用的目标检测数据集(感谢您的关注+三连,数据集持续更新中…),其中绝大部分数据集作者已应用于各种实际落地项目,数据集整体质量好,标注精确,数据的多样性充分,训练模型拟合较好,具有较高的研究和使用价值,各数据集都有下载链接及作者训练好的模型+源码下载链接,同时也有对应的检测效果视频,请放心下载~【实际项目应用】:阳光厨房、明厨亮灶智能监控方案【数据集说明】:老鼠检测数据集已更新到2018张,图片包含有白天和黑夜老鼠出没照片,标签包含voc(xml)和yolo格式

2022-10-12 21:32:27 23320 33

原创 【深度学习笔记】五步教你使用Pytorch搭建神经网络并训练

文章目录前言一、准备数据&加载数据1.准备数据(分类)2.加载数据二、定义损失函数1自定义损失函数或者使用Pytorch中现有的三、定义网络四、定义优化器五、迭代训练总结前言针对刚接触深度学习的小伙伴,肯定很想自己亲手搭建一个网络模型,训练模型。今天作者就五步教大家简单快速搭建一个分类网络,并训练模型,希望对初学者有一定帮助,欢迎大家收藏关注,作者将不断分享更新深度学习中的一些重要知识点。一、准备数据&加载数据1.准备数据(分类)作者是训练分类训练工作服和非工作服,如下图所示.

2021-09-03 10:05:37 9797

原创 Python初学者常犯的错误及其解决办法

在Windows里面你直接打开CMD、Powershell或者在macOS、Linux上打开终端,你看到的黑色窗口叫做命令行,这里执行的是命令。macOS、Linux的命令行一般是以符号开头。当你在终端里面,输入python3并回车的时候,打开的是Python交互环境>>>Python交互环境里面执行的是Python代码,而不是shell命令。你需要搞清楚,你是要执行shell命令、CMD命令还是执行Python代码。执行shell命令,就在终端里面,执行CMD命令,就在CMD里面。

2024-11-28 16:28:52 893

原创 基于STM32F407ZGT6芯片+多传感器开发的多参数水质监测系统含论文+答辩PPT+软硬件资料

STM32F407ZGT6微控制器:作为系统的核心处理器,负责数据采集、处理及通信逻辑的实现。该芯片具有高性能、低功耗的特点,适用于嵌入式控制系统。水质传感器温度传感器:用于监测水体的温度。pH值传感器:用于监测水体的酸碱度。溶解氧传感器:用于监测水体中的溶解氧含量。电导率传感器:用于监测水体的电导率。无线通信模块:通过Wi-Fi或LoRa等无线通信技术,实现数据的远程传输。本项目选用ESP8266 Wi-Fi模块。电源模块:为整个系统提供稳定的电源。

2024-11-25 08:30:00 1539

原创 C语言基于AVR单片机的电子万年历设计-附项目源码+论文

AVR单片机:作为系统的核心处理器,负责数据处理和控制逻辑的实现。本项目选用ATmega328P单片机。RTC模块:用于提供精确的时间基准。本项目选用DS3231实时时钟模块。LCD显示模块:用于显示时间、日期和星期等信息。本项目选用1602字符型LCD显示屏。按键模块:用于设置时间和日期。本项目使用4个按键,分别用于增加、减少、确认和返回操作。电源模块:为整个系统提供稳定的电源。

2024-11-24 12:00:00 769

原创 基于STM32的智能温室大棚控制系统设计(含软硬件及全部资料+说明文档)

STM32微控制器:作为系统的核心处理器,负责数据采集、处理及控制逻辑的实现。温度传感器:用于监测温室内的温度。湿度传感器:用于监测温室内的湿度。光照强度传感器:用于监测温室内的光照强度。土壤湿度传感器:用于监测土壤的湿度。继电器模块:用于控制风扇、水泵、补光灯等设备的开关。通信模块:通过Wi-Fi或LoRa等无线通信技术,实现远程监控和数据传输。LCD显示模块:用于显示当前的环境参数和系统状态。

2024-11-24 10:00:00 1193

原创 数学建模竞赛:生产企业原材料的订购与运输:解决生产企业原材料的订购与运输问题

( x_{ij} ):从供应商 ( i ) 订购并运输到工厂 ( j ) 的原材料数量。( c_{ij} ):从供应商 ( i ) 运输到工厂 ( j ) 的单位成本。( p_i ):供应商 ( i ) 的供货价格。( d_j ):工厂 ( j ) 的需求量。( s_i ):供应商 ( i ) 的供货能力。

2024-11-23 13:45:00 937

原创 课程设计:基于FPGA的出租车计价系统

FPGA控制模块:选用Xilinx或Altera系列的FPGA芯片,利用VHDL/Verilog语言编写控制逻辑。传感器模块:采用霍尔效应传感器检测车轮转动次数,进而计算行驶距离。显示模块:使用7段数码管或LCD屏显示相关信息。按键模块:包含启动、停止等几个按键,用于控制计价过程。电源模块:为系统提供5V或3.3V直流电。

2024-11-23 12:30:00 1594

原创 基于51单片机的嵌入式油烟机控制系统设计含源码+原理图+说明文档

51单片机:作为系统的核心处理器,负责接收来自各传感器的数据,并根据预设算法控制风扇的转速。烟雾传感器:用于检测厨房内油烟浓度的变化,为系统提供实时数据支持。温度传感器:监测厨房温度,辅助判断油烟产生情况。风扇驱动模块:接收单片机发出的指令,调整风扇转速以适应不同的油烟浓度。按键模块:允许用户手动设置工作模式或调整参数。LCD显示模块:用于显示当前的工作状态、油烟浓度等信息。

2024-11-22 09:30:00 633

原创 基于STC89C52单片机的简易温度测量系统+设计报告(含温度测量、时间显示、时间修改、数据记录和数据回显等功能)

🚀完整项目源码下载链接👉。

2024-11-21 09:00:00 506

原创 基于STM32F407VET6单片机的自动泊车系统设计--含设计报告和文档资料

在相邻车库有车的情况下完成倒车入库和侧方位入库。在相邻车库无车的情况下完成倒车入库和侧方位入库。能够连续完成上述功能组合。

2024-11-20 10:45:00 713

原创 基于单片机矿工生理状态监测系统的设计与实现-含源码+论文

本文通过查阅国内外相关资料,设计并实现了一套基于单片机的矿工生理状态监测系统。该系统能够实时监测矿工的体温、心率、血氧值和物理角度,并通过WiFi模块将数据传输到云平台,有效提高了矿工的工作安全性和健康水平。硬件优化:提高传感器的灵敏度和准确性,增强数据采集和传输的稳定性和可靠性。软件优化:开发更加高效、准确和实用的算法,提高数据处理和分析的精度和效率。应用拓展:探索生理状态监测系统的应用领域和未来发展方向,将其技术应用到其他行业和领域中,为人们的生产生活提供更加安全、健康和高效的保障。

2024-11-20 08:00:00 1895

原创 基于MATLAB的超宽带(UWB)信号的仿真和测试系统

随着无线通信技术的发展,超宽带(Ultra-Wideband, UWB)技术因其高数据传输速率、低功耗、抗多径衰落等优点而受到广泛关注。UWB技术适用于短距离高速数据传输,如个人区域网络、雷达系统和精确位置定位等应用。本文将介绍如何使用MATLAB进行UWB信号的仿真与测试,并构建一个完整的测试系统。🚀完整项目源码下载链接👉。

2024-11-19 15:35:45 1221

原创 基于ROS的GNSS定位系统:使用因子图优化(FGO)和扩展卡尔曼滤波(EKF)进行GNSS数据融合

因子图优化是一种基于图论的优化方法,通过构建因子图模型,将观测数据和先验知识转化为图中的节点和边,然后通过优化算法求解最可能的状态。因子图优化在处理非线性问题和多模态数据方面具有优势。

2024-11-19 15:30:35 1255

原创 模拟低轨道卫星通信:基于Python计算卫星与地面站之间的可见性和通信延迟

轨道高度:卫星距离地球表面的高度。倾角:卫星轨道平面与赤道平面的夹角。周期:卫星绕地球一周所需的时间。

2024-11-19 15:22:35 911

原创 使用深度强化学习方法实现股票投资组合优化(附项目源码+数据集+论文报告+答辩PPT)

本项目使用了科技公司的股票数据,包括但不限于苹果(AAPL)、谷歌(GOOGL)、微软(MSFT)等。数据来源包括历史股价、成交量、财务指标等。数据预处理步骤包括清洗、归一化和特征工程。

2024-11-16 08:45:00 1265

原创 采用多种深度学习、机器学习算法实现目标意图识别系统——含完整项目源码

描述:航空旅行信息系统的英文数据集。训练数据:4978条测试数据:888条类别:22个支持向量机是一种监督学习模型,用于分类和回归分析。它通过找到一个超平面来最大化不同类别之间的间隔。

2024-11-15 18:15:29 910

原创 深度强化学习方法--三维路径规划算法设计与实现(RRT+AOC+APF)

A*算法是一种启发式搜索算法,通过估计从当前节点到目标节点的成本来指导搜索方向。它结合了Dijkstra算法的广度优先搜索和贪婪最佳优先搜索的特点。本文介绍了如何在Matlab中实现基于深度强化学习的三维路径规划算法,并结合了多种传统路径规划算法。

2024-11-15 18:00:12 1052

原创 Flask和Python实现在线课堂学生疲劳检测系统设计与实现

后端:Flask(Web框架)前端图像处理:OpenCV(计算机视觉库)GUI界面:Tkinter(Python标准GUI库)本文介绍了如何利用Flask、OpenCV和Python开发一个在线课堂学生疲劳检测系统。通过视频流捕获、面部检测、疲劳检测和结果展示,我们展示了整个系统的搭建过程。

2024-11-15 17:48:26 1013

原创 基于机器学习电信号EMG训练分类模型控制仿生手控制系统(Matlab-Simulink实现)

肌电图(EMG)信号是从肌肉活动中获取的电信号,这些信号可以通过放置在皮肤表面的电极进行采集。EMG信号反映了肌肉活动的状态,是控制仿生手的重要输入。本文介绍了如何利用机器学习方法和Matlab-Simulink实现基于EMG信号的仿生手控制系统。通过数据采集、预处理、特征提取、分类模型训练和控制系统实现,我们展示了整个系统的搭建过程。

2024-11-15 17:39:43 1232

原创 基于YOLOv9的空中飞鸟识别检测系统(附项目源码和数据集下载)

基于YOLOv9的空中飞鸟识别检测系统是一个利用深度学习技术进行鸟类识别的应用,旨在实现对机场等场景中飞鸟的实时检测和预警,从而帮助提升飞行安全。本文将详细介绍该系统的Python源码、运行教程、训练好的模型以及评估指标曲线。

2024-10-15 12:00:00 1178

原创 基于YOLOv9实现的自行车检测系统:为共享自行车违停项目开发(附项目源码及数据集下载)

随着城市化进程的加快,自行车作为绿色出行工具,其数量在不断增加。然而,随之而来的自行车违停问题也日益严重,给城市交通管理带来了挑战。为了有效监测自行车违停情况,我们基于YOLOv9(You Only Look Once version 9)开发了一款自行车检测系统。该系统能够实时检测视频或图像中的自行车,并识别其是否违停,为城市交通管理提供智能化解决方案。本文将详细介绍该系统的Python源码、运行教程、训练好的模型以及评估指标曲线,旨在帮助读者快速上手并将其应用于自行车违停项目的开发中。

2024-10-14 16:55:43 1437

原创 【人工智能毕设课设】基于YOLOv9的水果(香蕉)成熟度识别划分系统(附项目源码和数据集下载)

YOLOv9是YOLO系列算法的最新版本,它在保持高效推理速度的同时,进一步提升了检测精度。通过引入更先进的网络结构、优化训练策略以及增强数据增强技术,YOLOv9在多个目标检测基准测试中取得了优异表现。本项目成功开发了一个基于YOLOv9的香蕉成熟度识别系统,实现了从数据预处理、模型训练到测试评估的完整流程。通过实际测试,系统表现出较高的识别精度和鲁棒性,为香蕉生产和管理提供了有力的技术支持。

2024-10-14 16:02:10 1160

原创 面试智力题 (附答案)

"Mr Miller为记 者举例说明了一种比较合理的答法,他首先在纸上画出了CN TOWER的草图,然后快 速估算支架和各柱的高度,以及球的半径,算出各部分体积,然后和各部分密度运 算,最后相加得出一个结果。如果有两顶黑帽子,第一次两人都只 看到对方头上的黑帽子,不敢确定自己的颜色,但到第二次关灯,这两人应该明白 ,如果自己戴着白帽,那对方早在上一次就应打耳光了,因此自己戴的也是黑帽子 ,于是也会有耳光声响起;现在小明过桥要1秒, 小明的弟弟要3秒,小明的爸爸要6秒,小明的妈妈要8秒,小明的爷爷要12秒。

2024-06-25 13:15:00 710

原创 嵌入式系统习题库及答案

嵌入式系统习题库及答案## 1.选择题1. 以下哪个不是嵌入式系统的设计的三个阶段之一:(A)A 分析B 设计C 实现D 测试2. 以下哪个不是RISC架构的ARM微处理器的一般特点:(C)A 体积小、低功耗B 大量使用寄存器C采用可变长度的指令格式,灵活高效D 寻址方式灵活简3. 通常所讲的交叉编译就是在X86架构的宿主机上生成适用于ARM架构的( A )格式的可执行代码。

2024-06-25 09:45:00 1305

原创 面试问题总结(包含各方面)

2、说出自己的观点:“我符合贵公司的招聘条件,凭我目前掌握的知识、技能、 高度的责任感、 良好的适应能力及学习能力, 完全能胜任这份工作。2、说出自己对困难所持有的态度:“工作中出现一些困难是正常的, 也是难免的, 但是只要有坚忍不拔的毅力、勤奋的学习态度, 良好的合作精神以及事前周密而充分的准备, 任何困难都是可以克服的。我的目的是:了解应聘者的心理承受能力、逻辑思维能力、演讲能力,而他的生平介绍却是其次的,因为,我们在他的简历中已经对其有所了解。我的目的是:应聘者是有感恩的心态,还是有仇恨的心态。

2024-06-24 12:30:00 532

原创 网络分层之7层讲解

要传递信息就要利用一些物理媒体,如双纽线、同轴电缆等,但具体的物理媒体并不在OSI的7层之内,有人把物理媒体当作第0层,物理层的任务就是为它的上一层提供一个物理连接,以及它们的机械、电气、功能和过程特性。该层的任务时根据通信子网的特性最佳的利用网络资源,并以可靠和经济的方式,为两个端系统(也就是源站和目的站)的会话层之间,提供建立、维护和取消传输连接的功能,负责可靠地传输数据。Note:有一些连接设备,如网桥或交换机,由于它们要对帧解码并使用帧信息将数据发送到正确的接收方,所以它们是工作在数据链路层的。

2024-06-24 09:00:00 1162

原创 数据结构-堆

(Heap)是一种特别的树状数据结构。若是满足以下特性,即可称为堆:“给定堆中任意节点P和C,若P是C的母节点,那么P的值会小于等于(或大于等于)C的值”。若母节点的值恒子节点的值,此堆称为(min heap);反之,若母节点的值恒子节点的值,此堆称为(max heap)。在堆中最顶端的那一个节点,称作(root node),根节点本身没有(heap sort),提出了二叉堆树作为此算法的数据结构。

2024-06-23 15:45:00 756

原创 TCP 三次握手

SYN-ACK重传次数服务器发送完SYN-ACK包,如果未收到客户确认包,服务器进行首次重传,等待一段时间仍未收到客户确认包,进行第二次重传,如果重传次数超过系统规定的最大重传次数,系统将该连接信息从半连接队列中删除。客户端再次发送确认包(ACK),SYN 标志位为0,ACK 标志位为1,并且把服务器发来 ACK 的序号字段+1,放在确定字段中发送给对方,并且在数据段放写ISN的+1。服务器端确认客户端的 FIN 包,发送一个确认包,表明自己接受到了客户端关闭连接的请求,但还没有准备好关闭连接。

2024-06-23 11:15:00 770

原创 4字节十进制数 转为 IPV4点分十进制 -- C++语言实现

【代码】4字节十进制数 转为 IPV4点分十进制 -- C++语言实现。

2024-06-22 16:30:00 359

原创 C++必会100题精(面试笔试有用)

5.已知一个类X, _____C_____是定义指向类X成员函数的指针,假设类有3个公有成员: void f1(int), void f2(int)和int a.54.类B是类A的公有派生类,类A和类B中都定义了虚函数func(),p是一个指向类A对象的指针,则p->A::func()将( A )9.已知f1(int)是类X的公有成员函数,p是指向成员f1()的指针,采用它赋值, ____ B ______是正确的.8.已知p是一个指向类X数据成员m的指针,s是类X的一个对象;

2024-06-22 12:15:00 1075

原创 模电复习题

在下图所示放大电路中,已知VCC=12V,Rb1=27kΩ,Rc=2kΩ,Re=1kΩ,UBE=0.7V,现要求静态电流 ICQ=3mA ,则 Rb2 约为()。已知U2=20V,稳压管的UDZ=9V,R=300Ω,RL=300Ω。正常情况下,电路的输出电压UO为()。下图所示共基放大电路的三极管为硅管,UBE=0.7V,rbb’=200Ω,β=100,可求得该电路的电压放大倍数为()。下图所示共基放大电路的三极管为硅管,UBE=0.7V,rbb’=200Ω,β=100,可求得该电路的输出电阻Ro为()。

2024-06-21 17:15:00 1684

原创 威泰视信嵌入式软件工程师笔试题

硬件看门狗,又叫 watchdog timer,是一个定时器电路, 一般有一个输入,叫喂狗,一个输出到MCU的RST端,MCU正常工作的时候,每隔一端时间输出一个信号到喂狗端,给 WDT 清零,如果超过规定的时间不喂狗,(一般在程序跑飞时),WDT 定时超过,就回给出一个[复位信号]到MCU,是MCU复位. 防止MCU死机. 看门狗的作用就是防止程序发生死循环,或者说程序跑飞。只要你代码或配置有改动,都要重新编译的,只是如果代码写成块模式的,不用整个代码都重新编译,编译器会自动编译改动了的代码。

2024-06-21 11:00:00 1987

原创 易兆微电子_嵌入式软件工程师笔试题

修饰符extern用在变量或者函数的声明前,用来说明 “ 此变量 / 函数是在别处定义的,要在此处引用 ”。1.关键字 extern是什么含义, 请举例说明。3.举例 解释 “ 宏 ” 的作用。嵌入式软件工程师笔试题(十七)2.根据规律问号处应是何图形?4.写出下面代码的打印结果。以下程序的输出结果是。

2024-06-20 19:00:00 227

原创 北京华油信通_笔试题

2.数组a [ ] [3] ={1, 2, 3, 4, 5, 6},a[1] [2] = 6。4.用 if 语句写出判断 * 和 0 的大小( )输入链表,输出两个链表的公共节点。

2024-06-20 10:15:00 214

原创 面试笔试--通用事件处理框架编写一个日志缓存插件

(3) 缓存策略为: 插件每收到一个 event, 就要先查看一下缓存中是否已经有了该事件、如果没有就添加, 否则更新一下缓存中的s_mac, s_user字段: 每隔30秒 , 需要将缓存中的事件“落地” , 写入 /var/ log/ loopfile.log 中;插件加载时, 要先从文件中加载旧数据。(2)在 loopfile插件中, 实现日志缓存功能, 缓存事件 event 中的 s_ip , s_mac, s_user 三个字段(均为字符串类型), 其中s_ip为key。

2024-06-19 19:30:07 408

毕设基于yolov9的红黄蓝绿球识别检测系统(含详细运行教程+模型+指标曲线).zip

【使用教程】 一、环境配置 1、建议下载anaconda和pycharm 在anaconda中配置好环境,然后直接导入到pycharm中,在pycharm中运行项目 anaconda和pycharm安装及环境配置参考网上博客,有很多博主介绍 2、在anacodna中安装requirements.txt中的软件包 命令为:pip install -r requirements.txt 或者改成清华源后再执行以上命令,这样安装要快一些 软件包都安装成功后才算成功 3、安装好软件包后,把anaconda中对应的python导入到pycharm中即可(不难,参考网上博客) 二、环境配置好后,开始训练(也可以训练自己数据集) 1、数据集准备 需要准备yolo格式的目标检测数据集,如果不清楚yolo数据集格式,或者有其他数据训练需求,请看博主yolo格式各种数据集集合链接:https://blog.csdn.net/DeepLearning_/article/details/127276492 里面涵盖了上百种yolo数据集,且在不断更新,基本都是实际项目使用。来自于网上收集、实际场景采集制作等,自己使用labelimg标注工具标注的。数据集质量绝对有保证! 本项目所使用的数据集,见csdn该资源下载页面中的介绍栏,里面有对应的下载链接,下载后可直接使用。 2、数据准备好,开始修改配置文件 参考代码中data文件夹下的banana_ripe.yaml,可以自己新建一个不同名称的yaml文件 train:训练集的图片路径 val:验证集的图片路径 names: 0: very-ripe 类别1 1: immature 类别2 2: mid-ripe 类别3 格式按照banana_ripe.yaml照葫芦画瓢就行,不需要过多参考网上的 3、修改train_dual.py中的配置参数,开始训练模型 方式一: 修改点: a.--weights参数,填入'yolov9-s.pt',博主训练的是yolov9-s,根据自己需求可自定义 b.--cfg参数,填入 models/detect/yolov9-c.yaml c.--data参数,填入data/banana_ripe.yaml,可自定义自己的yaml路径 d.--hyp参数,填入hyp.scratch-high.yaml e.--epochs参数,填入100或者200都行,根据自己的数据集可改 f.--batch-size参数,根据自己的电脑性能(显存大小)自定义修改 g.--device参数,一张显卡的话,就填0。没显卡,使用cpu训练,就填cpu h.--close-mosaic参数,填入15 以上修改好,直接pycharm中运行train_dual.py开始训练 方式二: 命令行方式,在pycharm中的终端窗口输入如下命令,可根据自己情况修改参数 官方示例:python train_dual.py --workers 8 --device 0 --batch 16 --data data/coco.yaml --img 640 --cfg models/detect/yolov9-c.yaml --weights '' --name yolov9-c --hyp hyp.scratch-high.yaml --min-items 0 --epochs 500 --close-mosaic 15 训练完会在runs/train文件下生成对应的训练文件及模型,后续测试可以拿来用。 三、测试 1、训练完,测试 修改detect_dual.py中的参数 --weights,改成上面训练得到的best.pt对应的路径 --source,需要测试的数据图片存放的位置,代码中的test_imgs --conf-thres,置信度阈值,自定义修改 --iou-thres,iou阈值,自定义修改 其他默认即可 pycharm中运行detect_dual.py 在runs/detect文件夹下存放检测结果图片或者视频 【备注】 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用!有问题请及时沟通交流。 2、适用人群:计算机相关专业(如计科、信息安全、数据科学与大数据技术、人工智能、通信、物联网、自动化、电子信息等)在校学生、专业老师或者企业员工下载使用。 【特别强调】 1、csdn上资源保证是完整最新,会不定期更新优化; 2、请用自己的账号在csdn官网下载,若通过第三方代下,博主不对您下载的资源作任何保证,且不提供任何形式的技术支持和答疑!!!

2024-11-27

深度学习毕设基于yolov9的实验室小鼠肿瘤检测系统(含详细运行教程+模型+指标曲线).zip

【使用教程】 一、环境配置 1、建议下载anaconda和pycharm 在anaconda中配置好环境,然后直接导入到pycharm中,在pycharm中运行项目 anaconda和pycharm安装及环境配置参考网上博客,有很多博主介绍 2、在anacodna中安装requirements.txt中的软件包 命令为:pip install -r requirements.txt 或者改成清华源后再执行以上命令,这样安装要快一些 软件包都安装成功后才算成功 3、安装好软件包后,把anaconda中对应的python导入到pycharm中即可(不难,参考网上博客) 二、环境配置好后,开始训练(也可以训练自己数据集) 1、数据集准备 需要准备yolo格式的目标检测数据集,如果不清楚yolo数据集格式,或者有其他数据训练需求,请看博主yolo格式各种数据集集合链接:https://blog.csdn.net/DeepLearning_/article/details/127276492 里面涵盖了上百种yolo数据集,且在不断更新,基本都是实际项目使用。来自于网上收集、实际场景采集制作等,自己使用labelimg标注工具标注的。数据集质量绝对有保证! 本项目所使用的数据集,见csdn该资源下载页面中的介绍栏,里面有对应的下载链接,下载后可直接使用。 2、数据准备好,开始修改配置文件 参考代码中data文件夹下的banana_ripe.yaml,可以自己新建一个不同名称的yaml文件 train:训练集的图片路径 val:验证集的图片路径 names: 0: very-ripe 类别1 1: immature 类别2 2: mid-ripe 类别3 格式按照banana_ripe.yaml照葫芦画瓢就行,不需要过多参考网上的 3、修改train_dual.py中的配置参数,开始训练模型 方式一: 修改点: a.--weights参数,填入'yolov9-s.pt',博主训练的是yolov9-s,根据自己需求可自定义 b.--cfg参数,填入 models/detect/yolov9-c.yaml c.--data参数,填入data/banana_ripe.yaml,可自定义自己的yaml路径 d.--hyp参数,填入hyp.scratch-high.yaml e.--epochs参数,填入100或者200都行,根据自己的数据集可改 f.--batch-size参数,根据自己的电脑性能(显存大小)自定义修改 g.--device参数,一张显卡的话,就填0。没显卡,使用cpu训练,就填cpu h.--close-mosaic参数,填入15 以上修改好,直接pycharm中运行train_dual.py开始训练 方式二: 命令行方式,在pycharm中的终端窗口输入如下命令,可根据自己情况修改参数 官方示例:python train_dual.py --workers 8 --device 0 --batch 16 --data data/coco.yaml --img 640 --cfg models/detect/yolov9-c.yaml --weights '' --name yolov9-c --hyp hyp.scratch-high.yaml --min-items 0 --epochs 500 --close-mosaic 15 训练完会在runs/train文件下生成对应的训练文件及模型,后续测试可以拿来用。 三、测试 1、训练完,测试 修改detect_dual.py中的参数 --weights,改成上面训练得到的best.pt对应的路径 --source,需要测试的数据图片存放的位置,代码中的test_imgs --conf-thres,置信度阈值,自定义修改 --iou-thres,iou阈值,自定义修改 其他默认即可 pycharm中运行detect_dual.py 在runs/detect文件夹下存放检测结果图片或者视频 【备注】 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用!有问题请及时沟通交流。 2、适用人群:计算机相关专业(如计科、信息安全、数据科学与大数据技术、人工智能、通信、物联网、自动化、电子信息等)在校学生、专业老师或者企业员工下载使用。 【特别强调】 1、csdn上资源保证是完整最新,会不定期更新优化; 2、请用自己的账号在csdn官网下载,若通过第三方代下,博主不对您下载的资源作任何保证,且不提供任何形式的技术支持和答疑!!!

2024-11-27

基于YOLOv9的道路车辆交通灯行人检测系统(共7类目标)+含详细运行教程+模型+指标曲线.zip

【使用教程】 一、环境配置 1、建议下载anaconda和pycharm 在anaconda中配置好环境,然后直接导入到pycharm中,在pycharm中运行项目 anaconda和pycharm安装及环境配置参考网上博客,有很多博主介绍 2、在anacodna中安装requirements.txt中的软件包 命令为:pip install -r requirements.txt 或者改成清华源后再执行以上命令,这样安装要快一些 软件包都安装成功后才算成功 3、安装好软件包后,把anaconda中对应的python导入到pycharm中即可(不难,参考网上博客) 二、环境配置好后,开始训练(也可以训练自己数据集) 1、数据集准备 需要准备yolo格式的目标检测数据集,如果不清楚yolo数据集格式,或者有其他数据训练需求,请看博主yolo格式各种数据集集合链接:https://blog.csdn.net/DeepLearning_/article/details/127276492 里面涵盖了上百种yolo数据集,且在不断更新,基本都是实际项目使用。来自于网上收集、实际场景采集制作等,自己使用labelimg标注工具标注的。数据集质量绝对有保证! 本项目所使用的数据集,见csdn该资源下载页面中的介绍栏,里面有对应的下载链接,下载后可直接使用。 2、数据准备好,开始修改配置文件 参考代码中data文件夹下的banana_ripe.yaml,可以自己新建一个不同名称的yaml文件 train:训练集的图片路径 val:验证集的图片路径 names: 0: very-ripe 类别1 1: immature 类别2 2: mid-ripe 类别3 格式按照banana_ripe.yaml照葫芦画瓢就行,不需要过多参考网上的 3、修改train_dual.py中的配置参数,开始训练模型 方式一: 修改点: a.--weights参数,填入'yolov9-s.pt',博主训练的是yolov9-s,根据自己需求可自定义 b.--cfg参数,填入 models/detect/yolov9-c.yaml c.--data参数,填入data/banana_ripe.yaml,可自定义自己的yaml路径 d.--hyp参数,填入hyp.scratch-high.yaml e.--epochs参数,填入100或者200都行,根据自己的数据集可改 f.--batch-size参数,根据自己的电脑性能(显存大小)自定义修改 g.--device参数,一张显卡的话,就填0。没显卡,使用cpu训练,就填cpu h.--close-mosaic参数,填入15 以上修改好,直接pycharm中运行train_dual.py开始训练 方式二: 命令行方式,在pycharm中的终端窗口输入如下命令,可根据自己情况修改参数 官方示例:python train_dual.py --workers 8 --device 0 --batch 16 --data data/coco.yaml --img 640 --cfg models/detect/yolov9-c.yaml --weights '' --name yolov9-c --hyp hyp.scratch-high.yaml --min-items 0 --epochs 500 --close-mosaic 15 训练完会在runs/train文件下生成对应的训练文件及模型,后续测试可以拿来用。 三、测试 1、训练完,测试 修改detect_dual.py中的参数 --weights,改成上面训练得到的best.pt对应的路径 --source,需要测试的数据图片存放的位置,代码中的test_imgs --conf-thres,置信度阈值,自定义修改 --iou-thres,iou阈值,自定义修改 其他默认即可 pycharm中运行detect_dual.py 在runs/detect文件夹下存放检测结果图片或者视频 【备注】 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用!有问题请及时沟通交流。 2、适用人群:计算机相关专业(如计科、信息安全、数据科学与大数据技术、人工智能、通信、物联网、自动化、电子信息等)在校学生、专业老师或者企业员工下载使用。 【特别强调】 1、csdn上资源保证是完整最新,会不定期更新优化; 2、请用自己的账号在csdn官网下载,若通过第三方代下,博主不对您下载的资源作任何保证,且不提供任何形式的技术支持和答疑!!!

2024-11-27

基于yolov9的道路车辆(卡车、小车、公交车)识别检测系统(含详细运行教程+模型+指标曲线).zip

【使用教程】 一、环境配置 1、建议下载anaconda和pycharm 在anaconda中配置好环境,然后直接导入到pycharm中,在pycharm中运行项目 anaconda和pycharm安装及环境配置参考网上博客,有很多博主介绍 2、在anacodna中安装requirements.txt中的软件包 命令为:pip install -r requirements.txt 或者改成清华源后再执行以上命令,这样安装要快一些 软件包都安装成功后才算成功 3、安装好软件包后,把anaconda中对应的python导入到pycharm中即可(不难,参考网上博客) 二、环境配置好后,开始训练(也可以训练自己数据集) 1、数据集准备 需要准备yolo格式的目标检测数据集,如果不清楚yolo数据集格式,或者有其他数据训练需求,请看博主yolo格式各种数据集集合链接:https://blog.csdn.net/DeepLearning_/article/details/127276492 里面涵盖了上百种yolo数据集,且在不断更新,基本都是实际项目使用。来自于网上收集、实际场景采集制作等,自己使用labelimg标注工具标注的。数据集质量绝对有保证! 本项目所使用的数据集,见csdn该资源下载页面中的介绍栏,里面有对应的下载链接,下载后可直接使用。 2、数据准备好,开始修改配置文件 参考代码中data文件夹下的banana_ripe.yaml,可以自己新建一个不同名称的yaml文件 train:训练集的图片路径 val:验证集的图片路径 names: 0: very-ripe 类别1 1: immature 类别2 2: mid-ripe 类别3 格式按照banana_ripe.yaml照葫芦画瓢就行,不需要过多参考网上的 3、修改train_dual.py中的配置参数,开始训练模型 方式一: 修改点: a.--weights参数,填入'yolov9-s.pt',博主训练的是yolov9-s,根据自己需求可自定义 b.--cfg参数,填入 models/detect/yolov9-c.yaml c.--data参数,填入data/banana_ripe.yaml,可自定义自己的yaml路径 d.--hyp参数,填入hyp.scratch-high.yaml e.--epochs参数,填入100或者200都行,根据自己的数据集可改 f.--batch-size参数,根据自己的电脑性能(显存大小)自定义修改 g.--device参数,一张显卡的话,就填0。没显卡,使用cpu训练,就填cpu h.--close-mosaic参数,填入15 以上修改好,直接pycharm中运行train_dual.py开始训练 方式二: 命令行方式,在pycharm中的终端窗口输入如下命令,可根据自己情况修改参数 官方示例:python train_dual.py --workers 8 --device 0 --batch 16 --data data/coco.yaml --img 640 --cfg models/detect/yolov9-c.yaml --weights '' --name yolov9-c --hyp hyp.scratch-high.yaml --min-items 0 --epochs 500 --close-mosaic 15 训练完会在runs/train文件下生成对应的训练文件及模型,后续测试可以拿来用。 三、测试 1、训练完,测试 修改detect_dual.py中的参数 --weights,改成上面训练得到的best.pt对应的路径 --source,需要测试的数据图片存放的位置,代码中的test_imgs --conf-thres,置信度阈值,自定义修改 --iou-thres,iou阈值,自定义修改 其他默认即可 pycharm中运行detect_dual.py 在runs/detect文件夹下存放检测结果图片或者视频 【备注】 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用!有问题请及时沟通交流。 2、适用人群:计算机相关专业(如计科、信息安全、数据科学与大数据技术、人工智能、通信、物联网、自动化、电子信息等)在校学生、专业老师或者企业员工下载使用。 【特别强调】 1、csdn上资源保证是完整最新,会不定期更新优化; 2、请用自己的账号在csdn官网下载,若通过第三方代下,博主不对您下载的资源作任何保证,且不提供任何形式的技术支持和答疑!!!

2024-11-27

基于计算机视觉yolov5算法实现小鼠肿瘤块检测及尺寸大小预测系统python源码+模型+测试数据.zip

基于计算机视觉yolov5算法实现小鼠肿瘤块检测及尺寸大小预测系统python源码+模型+测试数据 【项目介绍】 实验室小鼠 小鼠身体肿瘤块检测,及对肿瘤块大小预测,含模型、测试视频、图片、评估指标曲线等 python系统源码、完整源码,提供技术支持~ 【特别强调】 1、csdn上资源保证是完整最新,会不定期更新优化; 2、请用自己的账号在csdn官网下载,若通过第三方代下,博主不对您下载的资源作任何保证,且不提供任何形式的技术支持和答疑!!!

2024-11-27

毕设新项目基于pyqt5+python深度学习的刀棒、横幅识别检测系统(带GUI)源码+模型+数据集+操作教程.zip

基于pyqt5+python深度学习的刀棒、横幅识别检测系统(带GUI)源码+模型+数据集+操作教程.zip 项目操作说明: 1、搭建配置环境,正确安装完requirements.txt中的包,建议pytorch使用1.7~1.8之间的版本。 2、模型权重是model_weight文件夹下的exp_*/weights/best.pt文件,需要把best.pt拷贝到model_weight文件夹下。 3、完整“1”和“2”两步后,pycharm中或者anaconda命令窗口,执行main_gui.py,即可打开系统GUI界面。 4、GUI界面有三个按钮,分别是“图片检测”、“摄像头检测”,“视频检测”。点击选择即可。 【特别强调】 1、csdn上资源保证是完整最新,会不定期更新优化; 2、请用自己的账号在csdn官网下载,若通过第三方代下,博主不对您下载的资源作任何保证,且不提供任何形式的技术支持和答疑!!!

2024-11-27

各种系统编程和并行编程作业实验C和C++源码(含任务管理、进程间通信、并行算法等).zip

各种系统编程和并行编程作业实验C和C++源码(含任务管理、进程间通信、并行算法等) 这个项目是一个系统与并行编程的作业。它包含了多个作业,涉及系统编程和并行编程的相关内容。 主要功能点 包含多个作业,涉及系统编程和并行编程的相关内容 作业涵盖了各种系统编程和并行编程的主题,如任务管理、进程间通信、并行算法等 技术栈 C++ C CUDA CMake 【特别强调】 1、csdn上资源保证是完整最新,会不定期更新优化; 2、请用自己的账号在csdn官网下载,若通过第三方代下,博主不对您下载的资源作任何保证,且不提供任何形式的技术支持和答疑!!!

2024-11-25

立体匹配算法实现-基于C++和OpenCV3.1实现半全局匹配SGM算法完整源码.zip

立体匹配算法实现-基于C++和OpenCV3.1实现半全局匹配SGM算法完整源码.zip [项目介绍] 经典的立体匹配算法 - 半全局匹配(Semi-Global Matching, SGM)的完整实现。它兼顾了效率和效果,在立体匹配领域应用广泛,引用量超过4000次。该项目代码规范,注释清晰,并配有博客教学,非常适合学习和使用。 主要功能点 实现了SGM算法的核心功能,包括初始化、匹配和重置等公共函数。 提供了代价计算、代价聚合、视差优化和视差填充等关键步骤的实现。 支持Windows 10和Visual Studio 2015/2019环境,可方便移植到Linux平台。 技术栈 C++语言实现 依赖OpenCV 3.1.0第三方库

2024-11-20

多视几何三维重建算法库-用于3D计算机视觉和结构从运动(SfM).zip

多视几何三维重建算法库-用于3D计算机视觉和结构从运动(SfM) 多视图几何库,用于3D计算机视觉和结构从运动(SfM)。它提供了一个端到端的图像3D重建框架,包括库、二进制文件和管道。 主要功能点 提供图像操作、特征描述和匹配、特征跟踪、相机模型、多视图几何、鲁棒估计、结构从运动算法等功能 提供多个二进制文件,可用于场景初始化、特征检测和匹配、结构从运动重建等任务 支持在Android、iOS、Linux、macOS和Windows上运行 技术栈 主要使用C++开发 使用了多种计算机视觉和图像处理算法

2024-11-20

基于TensorFlow2的图像分类模型训练预测项目(支持ResNet和MobileNet等主干网络,热力图生成、可视化模型).zip

基于TensorFlow2的图像分类模型训练预测项目(支持ResNet和MobileNet等主干网络,热力图生成、可视化模型).zip 基于TensorFlow 2的图像分类模型。它提供了图像分类、热力图生成、模型评估等功能。该项目可以用于医疗影像分类等应用场景。 主要功能点 支持使用ResNet和MobileNet等主干网络进行图像分类 提供热力图生成功能,可视化模型对图像的关注区域 支持模型AUC ROC和Mask贡献率的评估 提供数据预处理、模型训练、预测等完整的工作流程 技术栈 Python TensorFlow 2 OpenCV Matplotlib 资源内含有详细的项目操作说明文档

2024-11-20

基于深度学习YOLOv9实现道路红绿灯行人车辆(8类)识别检测系统python源码+详细教程+模型+数据集+评估指标曲线.zip

【使用教程】 一、环境配置 1、建议下载anaconda和pycharm 在anaconda中配置好环境,然后直接导入到pycharm中,在pycharm中运行项目 anaconda和pycharm安装及环境配置参考网上博客,有很多博主介绍 2、在anacodna中安装requirements.txt中的软件包 命令为:pip install -r requirements.txt 或者改成清华源后再执行以上命令,这样安装要快一些 软件包都安装成功后才算成功 3、安装好软件包后,把anaconda中对应的python导入到pycharm中即可(不难,参考网上博客) 二、环境配置好后,开始训练(也可以训练自己数据集) 1、数据集准备 需要准备yolo格式的目标检测数据集,如果不清楚yolo数据集格式,或者有其他数据训练需求,请看博主yolo格式各种数据集集合链接:https://blog.csdn.net/DeepLearning_/article/details/127276492 更多详情介绍,见资源内的项目说明

2024-11-15

基于机器学习电信号EMG训练分类模型控制仿生手控制系统(matlab-simulink实现).zip

基于机器学习电信号EMG训练分类模型控制仿生手控制系统(matlab_simulink实现).zip 这个项目是一个使用机器学习技术控制仿生手的系统。它包括使用肌电信号(EMG)训练分类模型,并将其应用于仿真器中模拟仿生手的控制。 主要功能点 加载和处理EMG信号数据 训练EMG信号分类模型 在Simulink中创建仿生手控制仿真模型 技术栈 MATLAB Simulink 【特别强调】 1、csdn上资源保证是完整最新,会不定期更新优化; 2、如果您不是用自己账号在csdn官方下载,而通过第三方代下,博主不对您下载的资源作任何保证,且不提供任何形式的技术支持和答疑!!!

2024-11-06

毕设新项目基于Flask+OpenCV+Python得在线课堂学生疲劳检测系统应用程序含GUI界面+使用说明.zip

基于Flask+OpenCV+Python得在线课堂学生疲劳检测系统应用程序含GUI界面+使用说明.zip 这是一个基于 Flask 的 Python 应用程序,用于检测在线课堂期间的疲劳。该项目提供了一个简单的界面,可以检测用户的疲劳程度,并生成相关报告。 主要功能点 实时检测用户的疲劳状态 生成详细的疲劳报告,包括眨眼次数等指标 提供每日疲劳提示,帮助用户保持良好的学习状态 技术栈 Python Flask OpenCV dlib imutils scipy 【特别强调】 1、csdn上资源保证是完整最新,会不定期更新优化; 2、如果您不是用自己账号在csdn官方下载,而通过第三方代下,博主不对您下载的资源作任何保证,且不提供任何形式的技术支持和答疑!!!

2024-11-05

bsddb3-6.2.4.tar.gz

bsddb3-6.2.4.tar.gz

2024-11-04

bsddb3-6.2.0.zip

bsddb3-6.2.0.zip

2024-11-04

bsddb3-6.2.0.tar.gz

bsddb3-6.2.0.tar.gz

2024-11-04

bsddb3-6.2.2.tar.gz

bsddb3-6.2.2.tar.gz

2024-11-04

bsddb3-6.2.1.zip

bsddb3-6.2.1.zip

2024-11-04

bsddb3-6.2.1.tar.gz

bsddb3-6.2.1.tar.gz

2024-11-04

bsddb3-6.2.3.tar.gz

bsddb3-6.2.3.tar.gz

2024-11-04

python基于降水和洪水流量插值的洪水预测建模项目源码(含数据集+数据处理+模拟结果及全部资料).zip

python基于降水和洪水流量插值的洪水预测建模项目源码(含数据集+数据处理+模拟结果及全部资料) 【项目简介】 该项目主要围绕洪水预测相关方法展开,运用多种数据处理技术对洪水相关数据进行处理和分析,以实现更准确的洪水预测,具体包含多个数据处理脚本和相关文件夹 洪水流量插值功能(洪水流量插值.py) 此脚本主要处理洪水流量数据的插值。它会读取指定文件夹(C:/aaUserProgram/ArcGIS10.8/Project/shuikexue/数据预处理/洪水事件/新建文件夹)下的所有 CSV 文件。对于每个文件,先将其中的 “时间” 列转换为datetime格式并设为索引,接着按索引排序,然后创建一个包含从最早时间到最晚时间每小时的DateTimeIndex,将数据重新索引到这个新的时间索引上,使用线性插值方法填充缺失值,最后将插值后的结果保存到另一个指定文件夹(C:/aaUserProgram/ArcGIS10.8/Project/shuikexue/数据预处理/洪水事件插值结果)中,文件名会加上 “- 插值结果 gai.csv” 后缀。 降水筛选功能(降水筛选.py) 更多见项目

2025-02-08

基于改进的U-Net、ConvLSTM和ISAM4VP三种算法进行海洋要素智能预测源码(vue+flask搭建前后端系统).zip

基于改进的U-Net、ConvLSTM和ISAM4VP三种算法进行海洋要素智能预测源码(vue+flask搭建前后端系统).zip 【项目介绍】 使用了U-Net、ConvLSTM和ISAM4VP三种算法进行海洋要素预测,并最终采用ISAM4VP作为主要模型,分别训练了预测浪高、盐度、海温、海流和海风五种海洋要素的模型。该系统使用Vue和Flask搭建前后端,并使用D3.js进行海洋预报数据可视化,提供用户友好的交互界面。 主要功能 使用多种算法进行海洋要素预测,并对比精度后选择最优模型 分别训练预测浪高、盐度、海温、海流和海风等五种海洋要素的模型 使用Vue和Flask搭建前后端系统,提供可视化界面 使用D3.js进行海洋预报数据可视化,增强用户交互体验 技术栈 前端: Vue.js, D3.js 后端: Flask 数据处理: Python, 机器学习算法 地图服务: 天地图 【运行环境】 frontend 运行平台: windows 10 运行环境:node.js >= v18.15 npm >= 9.5.0 backend 运行平台: window

2025-02-08

基于Poco库的C++伺服系统代码模板项目(开发者只需要实现设备类接口和请求处理逻辑即可).zip

基于Poco库的C++伺服系统代码模板项目(开发者只需要实现设备类接口和请求处理逻辑即可).zip [项目介绍] 基于Poco库的C++伺服系统代码模板。该项目主要包含TCP通信架构和WebSocket通信架构,同时还集成了基于cpp-httplib的HTTP客户端。该项目可以作为开发伺服系统的基础框架使用。 主要功能点 提供基于TCP和WebSocket的通信架构 集成基于cpp-httplib的HTTP客户端 提供伺服系统的代码模板,开发者只需要实现设备类接口和请求处理逻辑即可 技术栈 C++ Poco库 cpp-httplib 主要依赖Poco库的C++伺服系统代码模板,最后将设 备类接口写出、请求处理过程写到common/proc.cpp中的router中即可完成对应的设备伺服系统 changelog 0.0.1 编写基于tcp的通信架构 0.0.2 将websocket加入到架构中,同时加入基于cpp-httplib的httpclient, 基于cpp-httplib的httpServer可以后续在实际的工程中加入,但是一般cpp的工程不会出现httpServer的模式

2025-02-08

2025毕设缺陷检测新项目-基于python深度学习的热轧带钢表面缺陷自动检测系统+模型+数据集+运行说明.zip

2025毕设新项目-基于python深度学习的热轧带钢表面缺陷自动检测系统+模型+数据集+运行说明.zip 【项目介绍】 1、资源含热轧带钢表面缺陷数据集,yolo格式、6类缺陷,分别是轧制氧化皮(RS),斑块(Pa),开裂(Cr),点蚀表面( PS),内含物(In)和划痕(Sc) 2、含有训练好的模型文件 3、使用的是深度学习技术,CNN网络,目标检测算法 4、含有项目运行说明,pyqt5开发的GUI界面,方便配置,操作简单。 【特别强调】 1、csdn上资源保证是完整最新,会不定期更新优化; 2、请用自己的账号在csdn官网下载,若通过第三方代下,博主不对您下载的资源作任何保证,且不提供任何形式的技术支持和答疑!!!

2025-02-06

适用yolo全系列算法-钢板表面缺陷数据集NEU-DET(含yolo格式txt标签、voc格式xml标签).zip

适用yolo全系列算法-钢板表面缺陷数据集NEU-DET(含yolo格式txt标签、voc格式xml标签 【数据集说明】 收集了热轧钢带的六种典型表面缺陷,即轧制氧化皮(RS),斑块(Pa),开裂(Cr),点蚀表面( PS),内含物(In)和划痕(Sc)。 包含yolo格式标签txt、voc格式xml文件 yolov3、yolov4、到yolov11,全系列算法可直接使用,高map和精确度

2025-02-06

适用于全系列YOLO算法的危险驾驶行为(打哈欠、抽烟、打电话)数据集6499张+yolo格式标签(可数据增强).zip

适用于全系列YOLO算法的危险驾驶行为(打哈欠、抽烟、打电话)数据集6499张+yolo格式标签(可数据增强) 【数据集说明】 1、数据集为本人实际落地dms产品项目所用,算法已移植到嵌入式产品,效果不错 2、数据集含4类,打哈欠、打电话(玩手机)、抽烟、人脸 3、数据已经标注好,为yolo格式标签(txt),如需其他格式,可私信博主,帮助转换 4、数据未作数据增强,可以自己再次做数据增强,训练实验等 5、数据集质量绝对可靠,从不上传垃圾骗人数据,请放心下载使用! 【特别强调】 1、csdn上资源保证是完整最新,会不定期更新优化; 2、请用自己的账号在csdn官网下载,若通过第三方代下,博主不对您下载的资源作任何保证,且不提供任何形式的技术支持和答疑!!!

2025-01-15

基于Keras+双向LSTM模型进行正常和病理性步态分类源码含27人步态数据+模型.zip

基于Keras+双向LSTM模型进行正常和病理性步态分类源码含27人步态数据+模型.zip 【项目说明】 使用Keras顺序模型进行正常和病理性步态分类的简单示例。它包含了一个双向LSTM模型,用于分类正常步态和两种病理性步态(膝关节僵硬和模拟跛行)。该项目提供了一个包含27个人步态数据的数据集,并提供了处理和加载数据的代码示例。 主要功能点 使用双向LSTM模型进行正常和病理性步态分类 提供包含27个人步态数据的数据集 提供数据处理和加载的代码示例 技术栈 Python Keras Jupyter Notebook

2024-12-12

深度学习课设-基于resnet网络实现鼠标手写数字识别源码+数据集+模型+运行说明(带GUI界面,直接界面上手写).zip

深度学习课设-基于resnet网络实现鼠标手写数字识别源码+数据集+模型+运行说明(带GUI界面,直接界面上手写).zip 【项目说明】 识别手写数字图像。 主要功能点 基于ResNet的手写数字识别 支持自定义训练数据集 提供了训练和预测的主要代码 技术栈 Python PyTorch ResNet 含有数据集下载链接、训练好的模型、运行教程。项目带有GUI界面,可直接鼠标手写,然后输出识别结果,非常容易部署运行。可借鉴学习,可在此基础二次开发,很不错的项目,也可以做毕设用。 【特别强调】 1、csdn上资源保证是完整最新,会不定期更新优化; 2、请用自己的账号在csdn官网下载,若通过第三方代下,博主不对您下载的资源作任何保证,且不提供任何形式的技术支持和答疑!!!

2024-12-04

Python+Flask架构基于Zero-Shot和监督学习结合方法实现多域多模型的机器生成文本检测系统+操作教程.zip

Python+Flask架构基于Zero-Shot和监督学习结合方法实现多域多模型的机器生成文本检测系统+操作教程.zip 【项目说明】 项目旨在实现对机器生成文本的检测。通过Zero-Shot和监督学习结合的方法,星鉴可以准确高效地区分多领域多模型的人类文本和机器生成文本。本项目适用于需要识别AI生成内容的各类应用场景。 系统架构 本项目基于Flask架构的前后端交互设计,用户通过前端页面交互,后端处理前端返回的文本或者文件,并将结果返回前端展示。 系统功能 系统支持中英文两种语言检测,同时支持用户上传文件进行检测,文件格式支持包括.txt,.docx,.pdf 功能列表 功能描述 文本检测功能 用户在客户端输入一段文本,检测完成后会返回一个这段文本由机器生成的概率 文件检测功能 长文本用户可以上传 PDF,DOCX 和 TXT 格式的文件,检测完成后会返回标注过的文件 深度文本分析 文本检测完成会告知用户各个段落由机器生成的概率,并标识各个成分的占比 文件标注功能 根据不同段落评估概率,标注高亮,并在侧面标注生成概率(PDF,DOCX)或直接标注概率(TXT)

2024-12-03

网络入侵检测信息安全大作业-基于模式匹配的入侵检测系统源码+运行教程(检测SQL注入、跨站脚本web攻击等).zip

【项目说明】 基于模式匹配的入侵检测系统。该系统可以检测常见的Web应用程序攻击,如SQL注入、跨站脚本攻击等。 主要功能点 实现了暴力匹配、KMP算法和Boyer-Moore算法三种字符串匹配算法,并进行了性能测试。 提供了图形化界面,用户可以方便地使用该系统。 增加了合并报文攻击的检测功能。 技术栈 C++ GTK+ 3.0 CMake 【项目运行方法】 mkdir build cd build cmake .. make sudo ./main ../patterns/patternfile BM #指定攻击算法为BM(可以改成其他) 【特别强调】 1、csdn上资源保证是完整最新,会不定期更新优化; 2、请用自己的账号在csdn官网下载,若通过第三方代下,博主不对您下载的资源作任何保证,且不提供任何形式的技术支持和答疑!!!

2024-12-03

机器学习电力数据预测分析项目-基于XGBoost算法实现美国电力数据PJM分析预测python源码+数据集.zip

机器学习电力数据预测分析项目-基于XGBoost算法实现美国电力数据PJM分析预测python源码+数据集.zip 【项目资源介绍】 使用框架 XGBoost XGBoost是经过优化的分布式梯度提升库,高效、灵活且可移植。它在Gradient Boosting框架下实现了机器学习算法。 XGBoost提供了并行树增强(也称为GBDT,GBM),可以快速准确地解决许多数据科学问题。 相同的代码在主要的分布式环境(Hadoop,SGE,MPI)上运行,并且可以解决数十亿个示例以外的问题。 使用了美国电力数据PJM作为数据源,并采用了XGBoost算法进行预测分析。该项目旨在对电力需求进行预测,为电力公司和投资者提供决策支持。 Main Function Points 数据预处理和分析 基于XGBoost算法的电力需求预测 预测结果分析和洞见 【特别强调】 1、csdn上资源保证是完整最新,会不定期更新优化; 2、请用自己的账号在csdn官网下载,若通过第三方代下,博主不对您下载的资源作任何保证,且不提供任何形式的技术支持和答疑!!!

2024-11-28

毕设新项目基于卷积神经网络的图像和视频风格迁移程序源码+模型+运行安装指南.zip

项目介绍: 基于卷积神经网络的图像和视频风格迁移应用程序。它可以将输入的图像或视频应用不同的艺术风格,生成新的图像或视频。 主要功能点 图像风格迁移:用户可以上传图像,选择不同的艺术风格,生成新的图像。 视频风格迁移:用户可以上传视频,选择不同的艺术风格,生成新的视频。 模型训练:用户可以使用自己的数据集和风格图像,训练新的风格迁移模型。 技术栈 Python PyTorch OpenCV NumPy Flask 程序运行环境配置安装指南 1.安装使用PyCharm Community Edition 2022.3.3 2.安装Python 3.安装Anaconda 4.安装PyTorch,opencv,numpy,av,torchvision,ffmpeg,skvideo,pillow,os,tqdm,numpy 5.启动项目 打开cmd,找到对应的项目目录,在anaconda运行python app.py ,后访问 http://127.0.0.1:5000 可打开网页。 6.训练模型 运行python train.py --dataset_path data/

2024-11-27

基于PyTorch实现神经网络图像风格实时迁移和迭代式非实时风格迁移源码+文档说明+模型.zip

基于PyTorch实现神经网络图像风格实时迁移和迭代式非实时风格迁移源码+文档说明+模型 【项目介绍】 实时风格迁移 迭代式的(非实时)风格迁移 图像风格迁移是深度学习中的一项有趣应用,它结合了两幅图像的内容和风格,创造出一幅新的图像。在内容上保留了原始图像的特征,还在风格上融合了另一幅图像的艺术特质。 主要功能点 实现了基于迭代优化的非实时风格迁移 实现了基于生成网络的实时风格迁移 提供了一些基本的使用示例 技术栈 PyTorch 卷积神经网络 图像生成 使用方法 提供了一些基本的使用示例,详细参数请见源代码或使用--help 命令获取 一、非实时风格迁移: 可以将输入内容图像和风格图像,即可完成风格迁移,运行时每一个epoch完成后会将生成的图像保存至output_dir 二、实时风格迁移: 模型训练: 这里提供了两个训练好的模型 一次性处理若干个图像: 对视频进行风格迁移: 原理介绍 我们需要对一个图像的内容和风格进行量化,具体方法如下: 使用预训练的深度卷积神经网络(例如 VGG-19)作为特征提取器。在这里,我们主要使用网络中间的一些卷积层的输出,而忽略了用

2024-11-27

python深度学习基于yolov9道路损坏破损检测系统源码+超详细教程+模型+指标曲线.zip

【使用教程】 一、环境配置 1、建议下载anaconda和pycharm 在anaconda中配置好环境,然后直接导入到pycharm中,在pycharm中运行项目 anaconda和pycharm安装及环境配置参考网上博客,有很多博主介绍 2、在anacodna中安装requirements.txt中的软件包 命令为:pip install -r requirements.txt 或者改成清华源后再执行以上命令,这样安装要快一些 软件包都安装成功后才算成功 3、安装好软件包后,把anaconda中对应的python导入到pycharm中即可(不难,参考网上博客) 二、环境配置好后,开始训练(也可以训练自己数据集) 1、数据集准备 需要准备yolo格式的目标检测数据集,如果不清楚yolo数据集格式,或者有其他数据训练需求,请看博主yolo格式各种数据集集合链接:https://blog.csdn.net/DeepLearning_/article/details/127276492 里面涵盖了上百种yolo数据集,且在不断更新,基本都是实际项目使用。来自于网上收集、实际场景采集制作等,自己使用labelimg标注工具标注的。数据集质量绝对有保证! 本项目所使用的数据集,见csdn该资源下载页面中的介绍栏,里面有对应的下载链接,下载后可直接使用。 2、数据准备好,开始修改配置文件 参考代码中data文件夹下的banana_ripe.yaml,可以自己新建一个不同名称的yaml文件 train:训练集的图片路径 val:验证集的图片路径 names: 0: very-ripe 类别1 1: immature 类别2 2: mid-ripe 类别3 格式按照banana_ripe.yaml照葫芦画瓢就行,不需要过多参考网上的 3、修改train_dual.py中的配置参数,开始训练模型 方式一: 修改点: a.--weights参数,填入'yolov9-s.pt',博主训练的是yolov9-s,根据自己需求可自定义 b.--cfg参数,填入 models/detect/yolov9-c.yaml c.--data参数,填入data/banana_ripe.yaml,可自定义自己的yaml路径 d.--hyp参数,填入hyp.scratch-high.yaml e.--epochs参数,填入100或者200都行,根据自己的数据集可改 f.--batch-size参数,根据自己的电脑性能(显存大小)自定义修改 g.--device参数,一张显卡的话,就填0。没显卡,使用cpu训练,就填cpu h.--close-mosaic参数,填入15 以上修改好,直接pycharm中运行train_dual.py开始训练 方式二: 命令行方式,在pycharm中的终端窗口输入如下命令,可根据自己情况修改参数 官方示例:python train_dual.py --workers 8 --device 0 --batch 16 --data data/coco.yaml --img 640 --cfg models/detect/yolov9-c.yaml --weights '' --name yolov9-c --hyp hyp.scratch-high.yaml --min-items 0 --epochs 500 --close-mosaic 15 训练完会在runs/train文件下生成对应的训练文件及模型,后续测试可以拿来用。 三、测试 1、训练完,测试 修改detect_dual.py中的参数 --weights,改成上面训练得到的best.pt对应的路径 --source,需要测试的数据图片存放的位置,代码中的test_imgs --conf-thres,置信度阈值,自定义修改 --iou-thres,iou阈值,自定义修改 其他默认即可 pycharm中运行detect_dual.py 在runs/detect文件夹下存放检测结果图片或者视频 【备注】 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用!有问题请及时沟通交流。 2、适用人群:计算机相关专业(如计科、信息安全、数据科学与大数据技术、人工智能、通信、物联网、自动化、电子信息等)在校学生、专业老师或者企业员工下载使用。 【特别强调】 1、csdn上资源保证是完整最新,会不定期更新优化; 2、请用自己的账号在csdn官网下载,若通过第三方代下,博主不对您下载的资源作任何保证,且不提供任何形式的技术支持和答疑!!!

2024-11-27

深度学习二维码识别检测-基于yolov9算法实现二维码检测python源码(含详细运行教程+模型+指标曲线).zip

【使用教程】 一、环境配置 1、建议下载anaconda和pycharm 在anaconda中配置好环境,然后直接导入到pycharm中,在pycharm中运行项目 anaconda和pycharm安装及环境配置参考网上博客,有很多博主介绍 2、在anacodna中安装requirements.txt中的软件包 命令为:pip install -r requirements.txt 或者改成清华源后再执行以上命令,这样安装要快一些 软件包都安装成功后才算成功 3、安装好软件包后,把anaconda中对应的python导入到pycharm中即可(不难,参考网上博客) 二、环境配置好后,开始训练(也可以训练自己数据集) 1、数据集准备 需要准备yolo格式的目标检测数据集,如果不清楚yolo数据集格式,或者有其他数据训练需求,请看博主yolo格式各种数据集集合链接:https://blog.csdn.net/DeepLearning_/article/details/127276492 里面涵盖了上百种yolo数据集,且在不断更新,基本都是实际项目使用。来自于网上收集、实际场景采集制作等,自己使用labelimg标注工具标注的。数据集质量绝对有保证! 本项目所使用的数据集,见csdn该资源下载页面中的介绍栏,里面有对应的下载链接,下载后可直接使用。 2、数据准备好,开始修改配置文件 参考代码中data文件夹下的banana_ripe.yaml,可以自己新建一个不同名称的yaml文件 train:训练集的图片路径 val:验证集的图片路径 names: 0: very-ripe 类别1 1: immature 类别2 2: mid-ripe 类别3 格式按照banana_ripe.yaml照葫芦画瓢就行,不需要过多参考网上的 3、修改train_dual.py中的配置参数,开始训练模型 方式一: 修改点: a.--weights参数,填入'yolov9-s.pt',博主训练的是yolov9-s,根据自己需求可自定义 b.--cfg参数,填入 models/detect/yolov9-c.yaml c.--data参数,填入data/banana_ripe.yaml,可自定义自己的yaml路径 d.--hyp参数,填入hyp.scratch-high.yaml e.--epochs参数,填入100或者200都行,根据自己的数据集可改 f.--batch-size参数,根据自己的电脑性能(显存大小)自定义修改 g.--device参数,一张显卡的话,就填0。没显卡,使用cpu训练,就填cpu h.--close-mosaic参数,填入15 以上修改好,直接pycharm中运行train_dual.py开始训练 方式二: 命令行方式,在pycharm中的终端窗口输入如下命令,可根据自己情况修改参数 官方示例:python train_dual.py --workers 8 --device 0 --batch 16 --data data/coco.yaml --img 640 --cfg models/detect/yolov9-c.yaml --weights '' --name yolov9-c --hyp hyp.scratch-high.yaml --min-items 0 --epochs 500 --close-mosaic 15 训练完会在runs/train文件下生成对应的训练文件及模型,后续测试可以拿来用。 三、测试 1、训练完,测试 修改detect_dual.py中的参数 --weights,改成上面训练得到的best.pt对应的路径 --source,需要测试的数据图片存放的位置,代码中的test_imgs --conf-thres,置信度阈值,自定义修改 --iou-thres,iou阈值,自定义修改 其他默认即可 pycharm中运行detect_dual.py 在runs/detect文件夹下存放检测结果图片或者视频 【备注】 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用!有问题请及时沟通交流。 2、适用人群:计算机相关专业(如计科、信息安全、数据科学与大数据技术、人工智能、通信、物联网、自动化、电子信息等)在校学生、专业老师或者企业员工下载使用。 【特别强调】 1、csdn上资源保证是完整最新,会不定期更新优化; 2、请用自己的账号在csdn官网下载,若通过第三方代下,博主不对您下载的资源作任何保证,且不提供任何形式的技术支持和答疑!!!

2024-11-27

智慧工地毕设-基于yolov9实现工人安全帽反光衣穿戴检测系统源码+详细运行教程+模型+指标曲线.zip

【使用教程】 一、环境配置 1、建议下载anaconda和pycharm 在anaconda中配置好环境,然后直接导入到pycharm中,在pycharm中运行项目 anaconda和pycharm安装及环境配置参考网上博客,有很多博主介绍 2、在anacodna中安装requirements.txt中的软件包 命令为:pip install -r requirements.txt 或者改成清华源后再执行以上命令,这样安装要快一些 软件包都安装成功后才算成功 3、安装好软件包后,把anaconda中对应的python导入到pycharm中即可(不难,参考网上博客) 二、环境配置好后,开始训练(也可以训练自己数据集) 1、数据集准备 需要准备yolo格式的目标检测数据集,如果不清楚yolo数据集格式,或者有其他数据训练需求,请看博主yolo格式各种数据集集合链接:https://blog.csdn.net/DeepLearning_/article/details/127276492 里面涵盖了上百种yolo数据集,且在不断更新,基本都是实际项目使用。来自于网上收集、实际场景采集制作等,自己使用labelimg标注工具标注的。数据集质量绝对有保证! 本项目所使用的数据集,见csdn该资源下载页面中的介绍栏,里面有对应的下载链接,下载后可直接使用。 2、数据准备好,开始修改配置文件 参考代码中data文件夹下的banana_ripe.yaml,可以自己新建一个不同名称的yaml文件 train:训练集的图片路径 val:验证集的图片路径 names: 0: very-ripe 类别1 1: immature 类别2 2: mid-ripe 类别3 格式按照banana_ripe.yaml照葫芦画瓢就行,不需要过多参考网上的 3、修改train_dual.py中的配置参数,开始训练模型 方式一: 修改点: a.--weights参数,填入'yolov9-s.pt',博主训练的是yolov9-s,根据自己需求可自定义 b.--cfg参数,填入 models/detect/yolov9-c.yaml c.--data参数,填入data/banana_ripe.yaml,可自定义自己的yaml路径 d.--hyp参数,填入hyp.scratch-high.yaml e.--epochs参数,填入100或者200都行,根据自己的数据集可改 f.--batch-size参数,根据自己的电脑性能(显存大小)自定义修改 g.--device参数,一张显卡的话,就填0。没显卡,使用cpu训练,就填cpu h.--close-mosaic参数,填入15 以上修改好,直接pycharm中运行train_dual.py开始训练 方式二: 命令行方式,在pycharm中的终端窗口输入如下命令,可根据自己情况修改参数 官方示例:python train_dual.py --workers 8 --device 0 --batch 16 --data data/coco.yaml --img 640 --cfg models/detect/yolov9-c.yaml --weights '' --name yolov9-c --hyp hyp.scratch-high.yaml --min-items 0 --epochs 500 --close-mosaic 15 训练完会在runs/train文件下生成对应的训练文件及模型,后续测试可以拿来用。 三、测试 1、训练完,测试 修改detect_dual.py中的参数 --weights,改成上面训练得到的best.pt对应的路径 --source,需要测试的数据图片存放的位置,代码中的test_imgs --conf-thres,置信度阈值,自定义修改 --iou-thres,iou阈值,自定义修改 其他默认即可 pycharm中运行detect_dual.py 在runs/detect文件夹下存放检测结果图片或者视频 【备注】 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用!有问题请及时沟通交流。 2、适用人群:计算机相关专业(如计科、信息安全、数据科学与大数据技术、人工智能、通信、物联网、自动化、电子信息等)在校学生、专业老师或者企业员工下载使用。 【特别强调】 1、csdn上资源保证是完整最新,会不定期更新优化; 2、请用自己的账号在csdn官网下载,若通过第三方代下,博主不对您下载的资源作任何保证,且不提供任何形式的技术支持和答疑!!!

2024-11-27

深度学习交通信号灯识别-基于yolov9实现道路红灯绿灯黄灯识别系统源码+详细运行教程+模型+指标曲线.zip

【使用教程】 一、环境配置 1、建议下载anaconda和pycharm 在anaconda中配置好环境,然后直接导入到pycharm中,在pycharm中运行项目 anaconda和pycharm安装及环境配置参考网上博客,有很多博主介绍 2、在anacodna中安装requirements.txt中的软件包 命令为:pip install -r requirements.txt 或者改成清华源后再执行以上命令,这样安装要快一些 软件包都安装成功后才算成功 3、安装好软件包后,把anaconda中对应的python导入到pycharm中即可(不难,参考网上博客) 二、环境配置好后,开始训练(也可以训练自己数据集) 1、数据集准备 需要准备yolo格式的目标检测数据集,如果不清楚yolo数据集格式,或者有其他数据训练需求,请看博主yolo格式各种数据集集合链接:https://blog.csdn.net/DeepLearning_/article/details/127276492 里面涵盖了上百种yolo数据集,且在不断更新,基本都是实际项目使用。来自于网上收集、实际场景采集制作等,自己使用labelimg标注工具标注的。数据集质量绝对有保证! 本项目所使用的数据集,见csdn该资源下载页面中的介绍栏,里面有对应的下载链接,下载后可直接使用。 2、数据准备好,开始修改配置文件 参考代码中data文件夹下的banana_ripe.yaml,可以自己新建一个不同名称的yaml文件 train:训练集的图片路径 val:验证集的图片路径 names: 0: very-ripe 类别1 1: immature 类别2 2: mid-ripe 类别3 格式按照banana_ripe.yaml照葫芦画瓢就行,不需要过多参考网上的 3、修改train_dual.py中的配置参数,开始训练模型 方式一: 修改点: a.--weights参数,填入'yolov9-s.pt',博主训练的是yolov9-s,根据自己需求可自定义 b.--cfg参数,填入 models/detect/yolov9-c.yaml c.--data参数,填入data/banana_ripe.yaml,可自定义自己的yaml路径 d.--hyp参数,填入hyp.scratch-high.yaml e.--epochs参数,填入100或者200都行,根据自己的数据集可改 f.--batch-size参数,根据自己的电脑性能(显存大小)自定义修改 g.--device参数,一张显卡的话,就填0。没显卡,使用cpu训练,就填cpu h.--close-mosaic参数,填入15 以上修改好,直接pycharm中运行train_dual.py开始训练 方式二: 命令行方式,在pycharm中的终端窗口输入如下命令,可根据自己情况修改参数 官方示例:python train_dual.py --workers 8 --device 0 --batch 16 --data data/coco.yaml --img 640 --cfg models/detect/yolov9-c.yaml --weights '' --name yolov9-c --hyp hyp.scratch-high.yaml --min-items 0 --epochs 500 --close-mosaic 15 训练完会在runs/train文件下生成对应的训练文件及模型,后续测试可以拿来用。 三、测试 1、训练完,测试 修改detect_dual.py中的参数 --weights,改成上面训练得到的best.pt对应的路径 --source,需要测试的数据图片存放的位置,代码中的test_imgs --conf-thres,置信度阈值,自定义修改 --iou-thres,iou阈值,自定义修改 其他默认即可 pycharm中运行detect_dual.py 在runs/detect文件夹下存放检测结果图片或者视频 【备注】 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用!有问题请及时沟通交流。 2、适用人群:计算机相关专业(如计科、信息安全、数据科学与大数据技术、人工智能、通信、物联网、自动化、电子信息等)在校学生、专业老师或者企业员工下载使用。 【特别强调】 1、csdn上资源保证是完整最新,会不定期更新优化; 2、请用自己的账号在csdn官网下载,若通过第三方代下,博主不对您下载的资源作任何保证,且不提供任何形式的技术支持和答疑!!!

2024-11-27

监控场景玩手机检测-基于yolov9的员工玩手机识别检测系统python源码+详细运行教程+模型+指标曲线.zip

【使用教程】 一、环境配置 1、建议下载anaconda和pycharm 在anaconda中配置好环境,然后直接导入到pycharm中,在pycharm中运行项目 anaconda和pycharm安装及环境配置参考网上博客,有很多博主介绍 2、在anacodna中安装requirements.txt中的软件包 命令为:pip install -r requirements.txt 或者改成清华源后再执行以上命令,这样安装要快一些 软件包都安装成功后才算成功 3、安装好软件包后,把anaconda中对应的python导入到pycharm中即可(不难,参考网上博客) 二、环境配置好后,开始训练(也可以训练自己数据集) 1、数据集准备 需要准备yolo格式的目标检测数据集,如果不清楚yolo数据集格式,或者有其他数据训练需求,请看博主yolo格式各种数据集集合链接:https://blog.csdn.net/DeepLearning_/article/details/127276492 里面涵盖了上百种yolo数据集,且在不断更新,基本都是实际项目使用。来自于网上收集、实际场景采集制作等,自己使用labelimg标注工具标注的。数据集质量绝对有保证! 本项目所使用的数据集,见csdn该资源下载页面中的介绍栏,里面有对应的下载链接,下载后可直接使用。 2、数据准备好,开始修改配置文件 参考代码中data文件夹下的banana_ripe.yaml,可以自己新建一个不同名称的yaml文件 train:训练集的图片路径 val:验证集的图片路径 names: 0: very-ripe 类别1 1: immature 类别2 2: mid-ripe 类别3 格式按照banana_ripe.yaml照葫芦画瓢就行,不需要过多参考网上的 3、修改train_dual.py中的配置参数,开始训练模型 方式一: 修改点: a.--weights参数,填入'yolov9-s.pt',博主训练的是yolov9-s,根据自己需求可自定义 b.--cfg参数,填入 models/detect/yolov9-c.yaml c.--data参数,填入data/banana_ripe.yaml,可自定义自己的yaml路径 d.--hyp参数,填入hyp.scratch-high.yaml e.--epochs参数,填入100或者200都行,根据自己的数据集可改 f.--batch-size参数,根据自己的电脑性能(显存大小)自定义修改 g.--device参数,一张显卡的话,就填0。没显卡,使用cpu训练,就填cpu h.--close-mosaic参数,填入15 以上修改好,直接pycharm中运行train_dual.py开始训练 方式二: 命令行方式,在pycharm中的终端窗口输入如下命令,可根据自己情况修改参数 官方示例:python train_dual.py --workers 8 --device 0 --batch 16 --data data/coco.yaml --img 640 --cfg models/detect/yolov9-c.yaml --weights '' --name yolov9-c --hyp hyp.scratch-high.yaml --min-items 0 --epochs 500 --close-mosaic 15 训练完会在runs/train文件下生成对应的训练文件及模型,后续测试可以拿来用。 三、测试 1、训练完,测试 修改detect_dual.py中的参数 --weights,改成上面训练得到的best.pt对应的路径 --source,需要测试的数据图片存放的位置,代码中的test_imgs --conf-thres,置信度阈值,自定义修改 --iou-thres,iou阈值,自定义修改 其他默认即可 pycharm中运行detect_dual.py 在runs/detect文件夹下存放检测结果图片或者视频 【备注】 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用!有问题请及时沟通交流。 2、适用人群:计算机相关专业(如计科、信息安全、数据科学与大数据技术、人工智能、通信、物联网、自动化、电子信息等)在校学生、专业老师或者企业员工下载使用。 【特别强调】 1、csdn上资源保证是完整最新,会不定期更新优化; 2、请用自己的账号在csdn官网下载,若通过第三方代下,博主不对您下载的资源作任何保证,且不提供任何形式的技术支持和答疑!!!

2024-11-27

驾驶员视角交通标识检测-基于yolov9实现道路交通标志标识检测系统源码+详细运行教程+模型+指标曲线.zip

【使用教程】 一、环境配置 1、建议下载anaconda和pycharm 在anaconda中配置好环境,然后直接导入到pycharm中,在pycharm中运行项目 anaconda和pycharm安装及环境配置参考网上博客,有很多博主介绍 2、在anacodna中安装requirements.txt中的软件包 命令为:pip install -r requirements.txt 或者改成清华源后再执行以上命令,这样安装要快一些 软件包都安装成功后才算成功 3、安装好软件包后,把anaconda中对应的python导入到pycharm中即可(不难,参考网上博客) 二、环境配置好后,开始训练(也可以训练自己数据集) 1、数据集准备 需要准备yolo格式的目标检测数据集,如果不清楚yolo数据集格式,或者有其他数据训练需求,请看博主yolo格式各种数据集集合链接:https://blog.csdn.net/DeepLearning_/article/details/127276492 里面涵盖了上百种yolo数据集,且在不断更新,基本都是实际项目使用。来自于网上收集、实际场景采集制作等,自己使用labelimg标注工具标注的。数据集质量绝对有保证! 本项目所使用的数据集,见csdn该资源下载页面中的介绍栏,里面有对应的下载链接,下载后可直接使用。 2、数据准备好,开始修改配置文件 参考代码中data文件夹下的banana_ripe.yaml,可以自己新建一个不同名称的yaml文件 train:训练集的图片路径 val:验证集的图片路径 names: 0: very-ripe 类别1 1: immature 类别2 2: mid-ripe 类别3 格式按照banana_ripe.yaml照葫芦画瓢就行,不需要过多参考网上的 3、修改train_dual.py中的配置参数,开始训练模型 方式一: 修改点: a.--weights参数,填入'yolov9-s.pt',博主训练的是yolov9-s,根据自己需求可自定义 b.--cfg参数,填入 models/detect/yolov9-c.yaml c.--data参数,填入data/banana_ripe.yaml,可自定义自己的yaml路径 d.--hyp参数,填入hyp.scratch-high.yaml e.--epochs参数,填入100或者200都行,根据自己的数据集可改 f.--batch-size参数,根据自己的电脑性能(显存大小)自定义修改 g.--device参数,一张显卡的话,就填0。没显卡,使用cpu训练,就填cpu h.--close-mosaic参数,填入15 以上修改好,直接pycharm中运行train_dual.py开始训练 方式二: 命令行方式,在pycharm中的终端窗口输入如下命令,可根据自己情况修改参数 官方示例:python train_dual.py --workers 8 --device 0 --batch 16 --data data/coco.yaml --img 640 --cfg models/detect/yolov9-c.yaml --weights '' --name yolov9-c --hyp hyp.scratch-high.yaml --min-items 0 --epochs 500 --close-mosaic 15 训练完会在runs/train文件下生成对应的训练文件及模型,后续测试可以拿来用。 三、测试 1、训练完,测试 修改detect_dual.py中的参数 --weights,改成上面训练得到的best.pt对应的路径 --source,需要测试的数据图片存放的位置,代码中的test_imgs --conf-thres,置信度阈值,自定义修改 --iou-thres,iou阈值,自定义修改 其他默认即可 pycharm中运行detect_dual.py 在runs/detect文件夹下存放检测结果图片或者视频 【备注】 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用!有问题请及时沟通交流。 2、适用人群:计算机相关专业(如计科、信息安全、数据科学与大数据技术、人工智能、通信、物联网、自动化、电子信息等)在校学生、专业老师或者企业员工下载使用。 【特别强调】 1、csdn上资源保证是完整最新,会不定期更新优化; 2、请用自己的账号在csdn官网下载,若通过第三方代下,博主不对您下载的资源作任何保证,且不提供任何形式的技术支持和答疑!!!

2024-11-27

基于python深度学习yolov9算法实现车轮检测源码+详细运行教程+模型+指标曲线.zip

【使用教程】 一、环境配置 1、建议下载anaconda和pycharm 在anaconda中配置好环境,然后直接导入到pycharm中,在pycharm中运行项目 anaconda和pycharm安装及环境配置参考网上博客,有很多博主介绍 2、在anacodna中安装requirements.txt中的软件包 命令为:pip install -r requirements.txt 或者改成清华源后再执行以上命令,这样安装要快一些 软件包都安装成功后才算成功 3、安装好软件包后,把anaconda中对应的python导入到pycharm中即可(不难,参考网上博客) 二、环境配置好后,开始训练(也可以训练自己数据集) 1、数据集准备 需要准备yolo格式的目标检测数据集,如果不清楚yolo数据集格式,或者有其他数据训练需求,请看博主yolo格式各种数据集集合链接:https://blog.csdn.net/DeepLearning_/article/details/127276492 里面涵盖了上百种yolo数据集,且在不断更新,基本都是实际项目使用。来自于网上收集、实际场景采集制作等,自己使用labelimg标注工具标注的。数据集质量绝对有保证! 本项目所使用的数据集,见csdn该资源下载页面中的介绍栏,里面有对应的下载链接,下载后可直接使用。 2、数据准备好,开始修改配置文件 参考代码中data文件夹下的banana_ripe.yaml,可以自己新建一个不同名称的yaml文件 train:训练集的图片路径 val:验证集的图片路径 names: 0: very-ripe 类别1 1: immature 类别2 2: mid-ripe 类别3 格式按照banana_ripe.yaml照葫芦画瓢就行,不需要过多参考网上的 3、修改train_dual.py中的配置参数,开始训练模型 方式一: 修改点: a.--weights参数,填入'yolov9-s.pt',博主训练的是yolov9-s,根据自己需求可自定义 b.--cfg参数,填入 models/detect/yolov9-c.yaml c.--data参数,填入data/banana_ripe.yaml,可自定义自己的yaml路径 d.--hyp参数,填入hyp.scratch-high.yaml e.--epochs参数,填入100或者200都行,根据自己的数据集可改 f.--batch-size参数,根据自己的电脑性能(显存大小)自定义修改 g.--device参数,一张显卡的话,就填0。没显卡,使用cpu训练,就填cpu h.--close-mosaic参数,填入15 以上修改好,直接pycharm中运行train_dual.py开始训练 方式二: 命令行方式,在pycharm中的终端窗口输入如下命令,可根据自己情况修改参数 官方示例:python train_dual.py --workers 8 --device 0 --batch 16 --data data/coco.yaml --img 640 --cfg models/detect/yolov9-c.yaml --weights '' --name yolov9-c --hyp hyp.scratch-high.yaml --min-items 0 --epochs 500 --close-mosaic 15 训练完会在runs/train文件下生成对应的训练文件及模型,后续测试可以拿来用。 三、测试 1、训练完,测试 修改detect_dual.py中的参数 --weights,改成上面训练得到的best.pt对应的路径 --source,需要测试的数据图片存放的位置,代码中的test_imgs --conf-thres,置信度阈值,自定义修改 --iou-thres,iou阈值,自定义修改 其他默认即可 pycharm中运行detect_dual.py 在runs/detect文件夹下存放检测结果图片或者视频 【备注】 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用!有问题请及时沟通交流。 2、适用人群:计算机相关专业(如计科、信息安全、数据科学与大数据技术、人工智能、通信、物联网、自动化、电子信息等)在校学生、专业老师或者企业员工下载使用。 【特别强调】 1、csdn上资源保证是完整最新,会不定期更新优化; 2、请用自己的账号在csdn官网下载,若通过第三方代下,博主不对您下载的资源作任何保证,且不提供任何形式的技术支持和答疑!!!

2024-11-27

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除