自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(83)
  • 资源 (4)
  • 收藏
  • 关注

原创 RNN原理

RNN原理1.经典RNN结构PART 1:       上图,时序形式的数据不好用原始的神经网络处理,为此RNN引入了隐状态h(hidden state)的概念,可以对序列形的数据提取特征,然后转换为输出。PART 2:上图从U,W分别为x,h0的参数矩阵,b为偏置项,f为激活函数。 PART 3:上图一次计算剩下的h,使用相同的参数矩阵U,W和偏置b...

2018-10-12 00:46:19 1938

转载 基于深度学习的单目图像深度估计

作者:buldajs链接:https://www.zhihu.com/question/53354718/answer/207687177来源:知乎著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。 基于深度学习的单目深度估计算近年比较火的方向之前搜集过相关的论文,尝试回答一下。Depth Map Prediction from a Single Image ...

2018-10-08 17:16:20 6608

原创 projective_inverse_warp()

def projective_inverse_warp(img, depth, pose, intrinsics): #反投影将源图像warp到目标图像平面 #ARGS: #img:源图像 [batch, height_s, width_s, 3] #depth:目标图像的深度图 [batch, height_t, width_t] #pose:目标来源相机变换矩阵[batc...

2018-09-20 01:36:15 785

原创 slim.arg_scope()

slim.arg_scope()slim.arg_scope可以定义一些函数的默认参数值,在scope内,我们重复用到这些函数时可以不用把所有参数都写一遍,注意它没有tf.variable_scope()划分图结构的功能, 1 2 3 4 5 6 7 8 9 10 11 12 ...

2018-09-18 19:41:29 1252

原创 scope 命名方法

scope能让你命名变量的时候轻松很多,一下讨论TensorFlow中的两种定义scope的方式。tf.name_scope()在TensorFlow当中有两种途径生成变量variable,一种是tf.get_variable(),另一种是tf.variable()。如果在tf.name_scope()的框架下使用这两种方式,结果会如下所示:可以看出使用 tf.Variable()...

2018-09-18 15:27:08 790

原创 TensorFlow数据读取机制

一、TensorFlow读取机制图解首先需要知道,什么是数据读取?以图像数据为例,读取数据的过程可以用以下图来表示:假设我们的硬盘中有一个图片数据集合0001.jpg,0002.jpg,0003.jpg……,我们只需要把他们读取到内存中,然后提供给GPU或者是CPU进行计算就可以了。事实上,我们必须先吧数据读取之后才能计算,这就大大降低了运算的效率。 如何解决这个问题?方法就是将读...

2018-09-04 16:26:44 547

原创 Parallel()

Joblib提供了一个简单的帮助类来编写并行化的循环。其核心思想是把代码写成生成器表达式的样子,然会再将它转换为并行计算:>>> from math import sqrt>>> [sqrt(i ** 2) for i in range(10)][0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0]使用...

2018-09-04 09:28:57 6694 2

原创 闭包函数

闭包的定义:闭包是函数式变成的重要的语法结构,在一个外函数中定义了一个内函数,内函数里运用了外函数的临时变量,并且外函数的返回值是内函数的引用。这样就构成了一个闭包。问题描述:一般情况下,当我们认知当中,如果一个函数结束,函数的内部所有东西都会释放掉,还给内存,局部变量就会消失。但是闭包是一种特殊情况,如果外函数在结束的时候发现有自己的临时变量将来会在内部函数中用到,就把这个临时变量绑定给了内...

2018-08-20 09:48:35 698

原创 enumerate() 函数

enumerate() 函数用于将一个可遍历的数据对象(如列表、元组或字符串)组合为一个索引序列,同时列出数据和数据下标,一般在for循环中使用。 

2018-08-16 16:24:38 262

原创 argparse

argparseargparse 是 Python 内置的一个用于命令项选项与参数解析的模块,通过在程序中定义好我们需要的参数,argparse 将会从 sys.argv 中解析出这些参数,并自动生成帮助和使用信息。argparse使用主要有三个步骤:创建 ArgumentParser() 对象 调用 add_argument() 方法添加参数 使用 parse_args() 解析...

2018-08-16 15:36:20 307

原创 python命名中下划线的含义

python不仅用奇特的空格表示代码块,还用变量和函数命名中的下划线来表示一些特殊含义。①_单下划线开头:弱 内部使用表示,如“from M import *”,将不导入所有下划线开头的对象,包括包、模块、成员②单下划线结尾_:只是为了避免与python关键字的命名冲突。③__双下划线开头:模块内的成员,表示私有成员,外部无法直接调用。④__双下划线开头双下划线结尾__:值那些py...

2018-08-13 21:28:16 670

原创 第二课:动态规划

1.什么是动态规划?之前提到解决序列决策问题有两种手段----学习与规划 当前有一个精确的环境模型时,可以用动态规划去解 编程算法中也有动态规划的概念,与其相似 总的来说,就是将问题分解成子问题,通过解决子问题,来解决原问题动态:针对序列问题规划:优化,得到策略贝尔曼方程是关键2.动态规划可以解决什么问题?动态规划是一种解决问题的方法,什么样的问题能使用动态规划去解?...

2018-07-25 00:01:08 688

原创 用TFTS读取时间序列数据

在训练模型之前,需要将事件序列数据读入成为Tensor的形式。TFTS库中提供了两个方便的读取器:NumpyReader----用于从numpy数组中读入数据;CSVReader----后者用于从CSV文件中读入数据。x = np.array(range(1000))noise = np.random.uniform(-0.2, 0.2, 1000)y = np.sin(np...

2018-07-19 23:57:50 1049

原创 使用 tf.nn.dynamic_rnn 展开时间维度

对于单个的 RNNCell , 使用色的 call 函数进行运算时 ,只是在序列时间上前进了一步 。如使用 x1、 ho 得到此h1, 通过 x2 、 h1 得到 h2 等 。 tf.nn.dynamic_rnn的作用:如果序列长度为n,要调用n次call函数,比较麻烦。对此,TensorFlow提供了一个tf.nn.dynamic_mn函数,使用该函数相当于调用了n次call函数。通...

2018-07-19 21:49:00 1543 1

原创 BasicRNNCell 和 BasicLSTMCell 的 output

在BasicRNNCell 和 BasicLSTMCell 的类中调用了call方法会得到output。由上图可知h对应了BasicRNNCell的state_size。那么y是不是对应了BasicRNNCell的output_size呢?答案是否定的!通过“ return output, output”,可以看出在 BasicRNNCell 中, output真实和隐状态...

2018-07-19 21:18:01 1004 1

原创 TensorFlow----实现 RNN 的基本单元: RNNCell

RNNCell是TensorFlow中发RNN基本单元。本身是一个抽象类,拥有两个子类,一个是BasicRNNCell,另一个是BasicLSTMCell。 (注:RNNCell:是抽象类不能进行实例化,可以使用它的子类 BasicRNNCell 或BasicLSTMCell 进行实例化,得到 cell )RNNCell的三个要点类方法call (实现单步循环) 类属性 stat...

2018-07-19 20:35:16 2125

原创 直观解读KL散度的数学概念

机器学习是当前最重要的技术发展方向之一。基本概念分布:分布可能指代不同的东西,比如数据分布或概率分布。我们这里所涉及的是概率分布,假设你在一张纸上画了两个轴(X,Y),我们可以将一个分布想成是落在这两根轴之间的一条线。其中,X表示你有兴趣获取概率的不同值。Y表示观察X轴上的值所得到的概率。即y=p(x)。下图即使某分布的可视化。这是一个连续分布。比如,我们可以将X轴看成是人的身...

2018-07-18 15:59:59 4324

原创 一文看懂深度学习优化方法——梯度下降

从很大程度上来说,深度学习实际上是在解决大量烦人的优化问题。神经网络仅仅是一个非常复杂的函数,包含数百万个参数,这些参数代表的是一个问题的数学解答。以图像分类为例,AlexNet 就是一个数学函数,它以代表图像 RGB 值的数组为输入,生成一组分类得分的输出。实质上,通过训练神经网络,我们是在最小化一个损失函数。这个损失函数的值衡量了我们网络的性能在给定数据集上离完美还差多少。损失函数简单起见,假...

2018-07-15 22:37:41 7387 3

原创 同类型同频率相位观测值的线性组合----差分观测值

1.观测值的线性组合:  同类型同频率观测值的线性组合,一号卫星L1和二号卫星L1 同类型不同频率观测值的线性组合,一号卫星L1和L2 不同类型观测值的线性组合,测距码和载波进行组合2.同类型同频率相位观测值的线性组合----差分观测值   可以消除相同的误差按照差分方式可以分为:站间差分(between receiveers)、星间差分(between satell...

2018-07-15 17:17:12 6022 1

原创 载波相位测量原理

1.重建载波定义:载波调制了电文之后变成了非连续的波,将非连续的载波信号恢复成连续的载波信号。码相关法:方法----将所接收到的调制信号(卫星信号)与接收机产生的复制码相乘。技术要点----卫星信号(弱)与接收机信号(强)相乘。特点----限制,需要了解码的结构;有点,可以获得导航电文,可以获得全波长的载波,信号质量好(信噪比高)。 平方法:方法----将所接受...

2018-07-14 15:08:18 33079

原创 一文看懂机器学习过拟合

什么是过拟合?首先我们来解释一下过拟合的概念?过拟合就是训练出来的模型在训练集上表现很好,但是在测试集上表现较差的一种现象!下图给出例子:我们将上图第三个模型解释为出现了过拟合现象,过度的拟合了训练数据,而没有考虑到泛化能力。在训练集上的准确率和在开发集上的准确率画在一个图上如下:从图中我们能够看出,模型在训练集上表现很好,但是在交叉验证集上表现先好后差。这也正是过拟合的特征!模型出现过拟合有三种...

2018-07-14 13:54:53 768

转载 使用CMD命令行满速下载百度云

需要准备工具:Windows10,CMD命令行,BaiduPCS-GO插件。下载完毕后可以存放到任何位置,建议存放到无中文目录内。然后打开我的电脑-属性-高级系统设置-环境变量-系统变量-Path。点击编辑,新建,输入你的BaiduPCS-Go存放目录,看清楚是存放目录▼如图所示:(我的存放目录是D:\BaiduPCS-Go)这样CMD才可以正确识别到程序做好所有准备后,Win+R键运行CMD,输...

2018-07-14 13:46:55 4346

原创 第一课:一文读懂马尔科夫过程

1.马尔科夫决策过程(MDPs)简介马尔科夫决策过程是对强化学习(RL)问题的数学描述。几乎所有的RL问题都能通过MDPs来描述:最优控制问题可以用MDPs来描述; 部分观测环境可以转化成POMDPs; 赌博机问题是只有一个状态的MDPs;注:虽然大部分DL问题都能转化为MDPs,但是以下所描述的MDPs是全观测的情况。强化学习中的表述符号:2.马尔科夫性只要知...

2018-07-14 00:57:29 36262 7

转载 电脑安装Chrome OS

原文地址:https://www.ithome.com/html/win10/336501.htm2010年12月7日,谷歌发布了一款桌面操作系统——Chrome OS,关于这款操作系统的新闻,IT之家没少报道过,相信不少读者对这款操作系统比较有兴趣,小编和你一样,也想看看这款国内用户基本上没怎么接触过的操作系统使用起来到底是一种什么样的体验。小编在自己的笔记本电脑上折腾过Windows、Linu...

2018-07-13 16:54:37 31242

原创 Jupyter Notebooks学习分享

Jupyter Notebooks 是数据科学/机器学习社区内一款非常流行的工具。Analytics Vidhya 的 Pranav Dar 近日发表了一篇上手使用 Jupyter Notebooks 的指南,从安装到基本功能进行了简洁清晰的介绍。引言应该使用哪个 IDE/环境/工具?这是人们在做数据科学项目时最常问的问题之一。可以想到,我们不乏可用的选择——从 R Studio 或 PyChar...

2018-07-13 16:46:26 787

原创 Efficient Inference in Fully Connected CRFs with Gaussian Edge Potentials

大多数用于图像分割和标记最先进的技术都使用了在像素或图像区域上的条件随机场。本文中在图像的所有像素总中定义全连接CRF模型。这样会产生数十亿的边缘,使得传统算法难以求解,针对这一问题本文提出了用于全连接CRF模型的高效近似推断算法,用来求解。其中PEP(pairwise edge potentials)是有高斯核的线性组合定义的。用来描述标签和标签之间关系的特征函数。1 Introdu...

2018-07-12 16:17:07 1589 1

原创 一文看懂隐马尔科夫模型

万事不如先举个栗子:假设有4个盒子,每个盒子里都有红白两种颜色的球,盒子里的红白球数如下:按照下面的方法抽取球,缠身给一个球的颜色的观测序列:①从4个盒子里以等概率随机选取1个盒子,从这个盒子里面随机抽出1个球,记录其颜色后,放回;②从当前盒子随机转移到下一个盒子,规则是:如果当前盒子是盒子1,那么下一个盒子一定是2,如果当前盒子是2或3那么,分别以概率0.4和0.6转移到左边或右边的盒子,如果是...

2018-07-11 22:45:24 2431 1

原创 条件随机场的参数化形式

设P(Y|X)为线性链条件随机场,则在随机变量X取值为x,的条件下,随机变量Y取值为y的条件概率具有如下形式:其中,上式为线性条件随机场模型的基本形式,表示给定输入序列x,对应序列y预测的条件概率。下面通过一个简单的例子进一步了解;解,由上式,线性条件随机场模型为...

2018-07-11 15:56:35 1403

原创 python的class(类)中的object是什么意思?

那写object和不写object有什么区别?好的,再用代码来理解它们的区别.# -.- coding:utf-8 -.-# __author__ = 'zhengtong'class Person:    """    不带object    """    name = "zhengtong"class Animal(object):    """    带有objec.

2018-07-06 23:04:15 89264 16

原创 一劳永逸的解决搜狗输入法输希腊字母的麻烦

自定义短语右键-设置属性高级-自定义短语设置直接编辑配置文件将以下内容复制粘贴到配置文件最后;  希腊字母alpha,4=αalpha,5=Αbeta,4=βbeta,5=Βgamma,4=γgamma,5=Γdelta,4=δdelta,5=Δepsilon,4=εepsilon,5=Εzeta,4=ζzeta,5=Ζeta,4=ηeta,5=Ηtheta,4=θtheta,5=Θiota,4=...

2018-06-25 16:14:16 5232 2

原创 Python--抽象类

1什么是抽象类与java一样,python也有抽象类的概念但是同样需要借助模块实现,抽象类是一个特殊的类,它的特殊之处在于只能被继承,不能被实例化2为什么要有抽象类如果说类是从一堆对象中抽取相同的内容而来的,那么抽象类就是从一堆类中抽取相同的内容而来的,内容包括数据属性和函数属性。 比如我们有香蕉的类,有苹果的类,有桃子的类,从这些类抽取相同的内容就是水果这个抽象的类,你吃水果时,要么是吃一个具体...

2018-06-25 15:48:36 1933

原创 阿拉伯学生提出博士论文证明地球是平的-已通过批准

地球是“平”的这个想法,事实上是相当新的理论。其实在所有人想到我们住在一个平面上之前,人类已知道地球是圆的。 即使有无数张地球的照片、从太空录下了数不清的影片,仍有人主张地球其实是平的。其中之一就是博士班的学生,他让阿拉伯科学界震惊了,因为他展示他的论文,宣称地球是平的、固定的,它是宇宙的中心,而且只有13500岁。是的,你没看错。他不只表示我们住在平的地球上,他还反对牛顿和爱因斯坦的理论、哥白尼...

2018-06-24 15:32:21 1061 1

原创 Win10/Ubuntu安装双系统

如何安装可和Windows共存的Ubuntu系统。Ubuntu简介Ubuntu是一款开放源代码的GNU/Linux操作系统,由全球化的专业开发团队Canonical Ltd打造。该系统具有庞大的社区力量,对GNU/Linux的普及作出了巨大贡献。Ubuntu既有面向桌面的版本,又有面向智能手机的版本。资料准备Ubuntu系统镜像下载地址:点击这里UltraISO官方网站:点击这里一只闲置的U盘安装...

2018-06-22 13:00:40 451 1

原创 用WordPress搭建个人博客

什么是WordPress?WordPress是一个注重美学、易用性和网络标准的个人信息发布平台。WordPress虽为免费的开源软件,但其价值无法用金钱来衡量。WordPress的图形设计在性能上易于操作、易于浏览;在外观上优雅大方、风格清新、色彩诱人。使用WordPress可以搭建功能强大的网络信息发布平台,但更多的是应用于个性化的博客。针对博客的应用,WordPress能让您省却对后台技术的担...

2018-06-22 12:47:42 577

原创 Ubuntu系统备份还原教程

一、备份很多人有备份系统的习惯,以防系统挂。Windows下可以用DISM创建一个系统镜像,在Ubuntu下,我们可以使用squashfs-tools创建系统镜像。准备工作可启动LiveCD一份,这个类似于你备份Windows需要WinRE/PE一样。一个Linux可以访问分区(相信大部分文件系统都可以),但不可以是系统所需要的分区,比如/ /home /var /usr /tmp,这就好比你不能...

2018-06-22 12:08:59 10155

原创 Linux常用命令大全

Linux常用命令大全(非常全!!!)最近都在和Linux打交道,感觉还不错。我觉得Linux相比windows比较麻烦的就是很多东西都要用命令来控制,当然,这也是很多人喜欢linux的原因,比较短小但却功能强大。我将我了解到的命令列举一下,仅供大家参考: 系统信息 arch 显示机器的处理器架构(1) uname -m 显示机器的处理器架构(2) uname -r 显示正在使用的内核版本 dmi...

2018-06-19 15:52:13 208

原创 Ubuntu 16.04 安装破解版 matlab 2017b

版权声明:原创博文未经博主同意不得转载,引用请注明出处 https://blog.csdn.net/qq_32892383/article/details/79670871摘要:介绍在ubuntu16.04中从下载到安装成功的完整步骤。本文给出MATLAB R2017b(Linux系统)的完整破解安装包百度云盘下载地址,逐步介绍一种简单易行的安装方法,在桌面创建快捷方式,最终完整运行。...

2018-06-16 00:45:10 1459

原创 利用matlab2017进行深度学习

Matlab一直以来都有着神经网络工具箱,而从2016的版本开始,提供深度神经网络的相关工具。而到现如今2017的版本,功能更加完善,因此本人在此总结Matlab 2017所包含的深度学习的功能。如今版本的Matlab已经包含的如下功能:Ø 利用自己的数据微调训练好的网络(迁移学习)Ø 获取已经训练好的神经网络            包含Alexnet、VGG16、VGG19Ø 提供了方便的窗口式...

2018-06-16 00:43:52 4519

原创 Ubuntu16.04下CUDA 9.0 + cuDNN v7.0 + tensorflow 1.6.0(GPU)环境搭建

由于自己攒了个主机,第一次安装GPU版本的tensorflow,mark一下。说明一下,本篇上接《Ubuntu16.04LTS下搭建强化学习环境gym、tensorflow》这篇文章,只不过修改了第四步(安装tensorflow)。说一下环境的版本:系统:Ubuntu 16.04.3显卡:gtx 1080(索泰 至尊Plus OC)CUDA 9.0cuDNN v7.0.5 for CUDA 9.0...

2018-06-16 00:42:07 492

原创 windows10和ubuntu16.04双系统下时间不对的问题

windows10和ubuntu16.04双系统下时间不对的问题  最近装了windows10和ubuntu16.04双系统,仍然出现了喜闻乐见的老问题,装完后,在windows下时区不对,之前的老办法是:sudo gedit /etc/default/rcSutc=yes 改成utc=no  然而并没有什么效果,ubuntu16.04里面根本就没有utc这一项!...

2018-06-16 00:40:39 383

ippicv_linux_20151201--opencv3.2.0的依赖项.zip

安装编译opencv3.2.0遇到ippicv无法下载的报:-- ICV: Downloading ippicv_linux_20151201.tgz... CMake Error at 3rdparty/ippicv/downloader.cmake:73 (file): file DOWNLOAD HASH mismatch 下载ippicv_linux_20151201.tgz 并粘贴(替换)到目录opencv-3.2.0/3rdparty/ippicv/downloads/linux-808b791a6eac9ed78d32a7666804320e/

2020-04-10

白话区块链_区块链丛书

白话区块链_区块链丛书,非常好的区块链入门书籍,墙裂推荐

2018-06-24

神经网络深度学习+MNIST数字识别实验报告

神经网络深度学习+MNIST数字识别实验报告,包含完整实验报告+代码实现

2018-06-20

视觉SLAM十四讲PPT-高翔亲笔

深蓝学院精品课程PPT分享,视觉SLAM十四讲配套PPT,高翔亲自做的PPT, 全网唯一资源

2018-06-16

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除