概述
狼人杀游戏是一种受欢迎的多人沟通策略游戏。在Xu等人所作的 《Exploring Large Language Models for Communication Games: An Empirical Study on Werewolf》(以下简称“论文”)为题的论文中,展示了大型语言模型(LLM)在游戏中的潜力。考虑到MetaGPT作为一个智能体框架,我们提出了这个挑战:我们能否使用MetaGPT来快速复制生动的游戏体验?我们非常高兴地宣布,我们成功完成了这个挑战。
遵循论文的思路,我们成功地通过MetaGPT实现了狼人杀游戏智能体的开发。我们展示了以下内容:
- 当需要构建多智能体文本游戏,其中智能体之间需要进行精细化沟通时,MetaGPT框架是极佳选择。
- MetaGPT提供了直观和自然的抽象,当恰当地使用时,有助于将强大的功能集成到智能体中,如反思、经验学习等。
- 在初步实验中,通过调整反思和经验学习机制,我们观察到了智能体性能的明显提高。
有关更多详细信息,将在本文中剩下部分进行探讨。完整的代码可在MetaGPT代码库上获得。有关运行代码的指南,请参阅“代码运行指南”部分。关于MetaGPT的总体介绍,请参阅我们的论文。
演示
狼人杀智能体游玩演示
在深入实现细节探讨之前,让我们先看一下智能体在狼人杀游戏中的精彩瞬间。我们在网页上展示了5个具有代表性的游戏过程,并提供完整的30个运行的转录,供您探索和娱乐!
友情提示:
- 关于这个游戏的完整介绍可以在论文中找到。游戏的设置是两个村民,一个预言家,一个女巫,一个守卫和两个狼人。我们采用了游戏社区中更为常见的规则,即当狼人屠边时(消除了所有特殊角色或所有村民),狼人就获胜。
- 为了促进更加精彩的游戏效果,我们在狼人智能体游玩之前引入相关策略,以此来引导他们积极地模仿特殊角色。
- 当然为了实验的简易化的进行:当两个狼人在晚上瞄准两个不同的玩家时,目标默认为第二个选择。
- 我们使用GPT-4进行游戏运行。
智能体的精彩瞬间
我们观察到了各种情况,其中我们的智能体表现出逻辑甚至战略行为。以下是一些精彩瞬间:
合作 / 共谋
- Player5(守卫)推理出预言家,分析出当晚选择守卫预言家可以最大化价值,因此守卫了Player6。
- Player1(狼人)控告Player2时,Player5(狼人)果断进行了支持。