加权约数和,51nod 1584,困难的莫比乌斯反演

正题

      首先看到max很不爽,先去掉:

      2\sum_{i=1}^ni\sum_{j=1}^i \sigma(ij)-\sum_{i=1}^ni\sigma(i^2)

      后面那个东西可以线性筛预处理出来,我们先不管。

      考虑对于每一个i,他的取值:F(n)=n\sum_{i=1}^n\sigma(ni)

      我们先考虑\sigma(ij)到底等于什么,先给出公式:

      \sigma(ij)=\sum_{u|i}\sum_{v|j} [gcd(u,\frac{j}{v})=1]uv

      其实这种方法构造地十分巧妙,我们将每一个质因子分开来讨论;

      也就是说,观察\sum_{u|p_k^{a_1}}\sum_{v|p_k^{a_2}}[gcd(u,\frac{p_k^{a_2}}{v})==1]uv是否等于\sum_{i=0}^{a_1+a_2}p_k^i

      因为如果等于的话,相乘一下就是\sigma(ij)

      u=1时,可以表示出来\sum_{i=0}^{a_2}p_k^i

      当v=p_k^{a_2},u\not=1时,可以表示出来\sum_{i=a_2+1}^{a_1+a_2} p_k^i

      相加即是\sum_{i=0}^{a_1+a_2}p_k^i

      那么我们就证明了这条公式。换个形式写一下:\sigma(ij)=\sum_{u|i}\sum_{v|j}[gcd(u,v)==1] \frac{uj}{v}

      代进原式可以得到:

      \\F(n)=n\sum_{i=1}^n\sum_{u|n}\sum_{v|i}[gcd(u,v)==1]\frac{ui}{v} \\=n\sum_{i=1}^n\sum_{g|n\&g|i}\mu(g)\sum_{g|u\&u|n}\sum_{g|v\&v|i}\frac{ui}{v} \\=n\sum_{i=1}^n\sum_{g|n\&g|i}\mu(g)(g\sigma(\frac{n}{g}))\sigma(\frac{i}{g}) \\=n\sum_{g|n} (\mu(g)g)(\sigma(\frac{n}{g})\sum_{i=1}^{\frac{n}{g}}\sigma(i))

      都可以线性筛,把前面和后面预处理出来狄利克雷卷积一下即可。

#include<bits/stdc++.h>
using namespace std;

const int N=1000000;
bool vis[N+10];
int p[N+10],d[N+10],g[N+10],sig[N+10],T,n,e[N+10];
int a[N+10],b[N+10],la[N+10],lb[N+10],f[N+10],q[N+10];
const long long mod=1e9+7;

int main(){
	g[1]=1;sig[1]=1;e[1]=1;
	for(int i=2;i<=N;i++){
		if(!vis[i]){
			p[++p[0]]=i,g[i]=mod-1,sig[i]=i+1,e[i]=(1+i+1ll*i*i)%mod;
			la[i]=lb[i]=1;a[i]=i;b[i]=1ll*i*i%mod;f[i]=sig[i];q[i]=e[i];
		}
		for(int j=1,tmp;j<=p[0] && 1ll*i*p[j]<=N;j++){
			tmp=i*p[j];
			vis[tmp]=true;
			if(i%p[j]==0) {
				a[tmp]=1ll*a[i]*p[j]%mod;
				f[tmp]=f[i]+a[tmp],f[tmp]>=mod?f[tmp]-=mod:0;
				q[tmp]=(q[i]+1ll*b[i]*p[j]%mod+1ll*b[i]*p[j]%mod*p[j]%mod)%mod;
				b[tmp]=1ll*b[i]*p[j]%mod*p[j]%mod;
				la[tmp]=la[i];lb[tmp]=lb[i];
				sig[tmp]=1ll*la[i]*f[tmp]%mod;
				e[tmp]=1ll*lb[i]*q[tmp]%mod;
				break;
			}
			a[tmp]=p[j];b[tmp]=1ll*p[j]*p[j]%mod;
			f[tmp]=1+p[j],q[tmp]=(1+p[j]+b[tmp])%mod;
			f[tmp]>=mod?f[tmp]-=mod:0,q[tmp]>=mod?q[tmp]-=mod:0;
			la[tmp]=sig[i],lb[tmp]=e[i];
			sig[tmp]=1ll*sig[i]*sig[p[j]]%mod;
			e[tmp]=1ll*e[i]*e[p[j]]%mod;
			g[tmp]=mod-g[i];
		}
		g[i]=1ll*g[i]*i%mod;
	}
	p[0]=0;for(int i=1;i<=N;i++) p[i]=p[i-1]+sig[i],p[i]>=mod?p[i]-=mod:0;
	for(int i=1;i<=N;i++) sig[i]=1ll*sig[i]*p[i]%mod,p[i]=0;
	for(int i=1;i<=N;i++)
		for(int j=1;j<=N/i;j++)
			p[i*j]+=1ll*sig[i]*g[j]%mod,p[i*j]>=mod?p[i*j]-=mod:0;
	for(int i=1;i<=N;i++) p[i]=(2ll*p[i]*i%mod-1ll*e[i]*i%mod+mod)%mod+p[i-1],p[i]>=mod?p[i]-=mod:0;
	scanf("%d",&T);
	for(int i=1;i<=T;i++){
		scanf("%d",&n);
		printf("Case #%d: %d\n",i,p[n]);
	}
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值