[JSOI2008]星球大战,洛谷之提高历练地,并查集

原创 2018年04月15日 16:07:43

正题

      第三题:[JSOI2008]星球大战

      这道题的大意是,给出一些边,然后每次删去某些点,求删去点后的联通块。

      我们当然想到的是:并查集的操作以加点为主(没见过删点)。。

      然后我们就想到要倒过来做,我们假设现在已经删完点了,逐个加点进去判断是否在同一个联通块,用一个tot来记录当前联通块数量,明显每加一条连接两个不同集合的边,总集合数就会少1.然后把答案记录下来,倒过来输出即可。

代码<删点留坑>

#include<cstdio>
#include<cstdlib>
#include<cstring>

int n,m,k;
struct edge{
	int x,y,next;
}s[400010];
int fa[400010];
int first[400010];
int len=0;
bool tf[400010];
int q[400010];
int ans[400010];
int t=0;

void ins(int x,int y,int c){
	len++;
	s[len].y=y;s[len].x=x;s[len].next=first[x];first[x]=len;
}

int findpa(int x){
	if(x!=fa[x]) return fa[x]=findpa(fa[x]);
	return fa[x];
}

int main(){
	scanf("%d %d",&n,&m);
	for(int i=1;i<=m;i++){
		int x,y,c;
		scanf("%d %d",&x,&y);
		ins(x,y,c);
		ins(y,x,c);
	}
	scanf("%d",&k);
	for(int i=1;i<=k;i++){
		int x;
		scanf("%d",&x);
		tf[x]=true;
		q[i]=x;
	}
	for(int i=1;i<=n;i++)
		fa[i]=i;
	int tot=n-k;
	for(int i=1;i<=len;i++)
		if(tf[s[i].x]==false && tf[s[i].y]==false) {
			int fx=findpa(s[i].x),fy=findpa(s[i].y);
			if(fx!=fy) {
				tot--;
				fa[fx]=fy; 
			}
		}
	ans[++t]=tot;
	while(1){
		tot++;
		tf[q[k]]=false;
		for(int i=first[q[k]];i!=0;i=s[i].next)
			if(tf[s[i].x]==false && tf[s[i].y]==false){
				int fx=findpa(s[i].x),fy=findpa(s[i].y);
				if(fx!=fy) {
					fa[fx]=fy;
					tot--;
				}
			}
		k--;
		ans[++t]=tot;
		if(k==0) break;
	}
	for(int i=t;i>=1;i--)
		printf("%d\n",ans[i]);
}

版权声明: https://blog.csdn.net/Deep_Kevin/article/details/79950048

C语言及程序设计提高

本课为“C语言及程序设计”系列课程中的第二部“提高篇”。在第一部“初步篇”介绍基本的数据结构和控制结构基础上,引入函数和数组,传授模块化设计的方法,目标是使学习者有能力编制出300行左右代码的应用程序。系列课程针对没有任何程序设计基础的初学者,关注学习者能够通过实践的方式,学会利用C语言解决问题。与课程同步的实践指导,以及贯穿始终的“银行储蓄系统”,帮助初学者真正具备程序设计能力。
  • 2015年02月08日 08:06

SuperGCD,洛谷之提高历练地,数论(3-5)

前话      数论就是研究整数的理论。包括公约公倍数、质数、欧拉定理和同余方程等。正文       其实数论不止那么简单正文      第一题:SuperGCD      这一题就是很烦的代码加很烦...
  • Deep_Kevin
  • Deep_Kevin
  • 2018-04-07 17:19:43
  • 17

[SDOI2009]E&D,洛谷之提高历练地,博弈论(3-6)

正题      第四题:[SDOI2009]E&amp;amp;D      这题不是如此的简单,因为它要涉及到找规律和Sg函数。      首先的,我们可以打一个表来观察之间的关系。      Sg...
  • Deep_Kevin
  • Deep_Kevin
  • 2018-04-08 13:48:45
  • 14

洛谷1197 [JSOI2008]星球大战

洛谷1197 [JSOI2008]星球大战 本题地址: http://www.luogu.org/problem/show?pid=1197题目描述 很久以前,在一个遥远的星系,一个黑暗的帝国靠着...
  • huzujun
  • huzujun
  • 2015-07-21 21:26:50
  • 424

食物链,洛谷之提高历练地,并查集

正文      第二题:食物链      这题经典啊!!!我们可以想象,如果我们可以搞一个并查集来维护x的同伙,天敌和食物就好了。      我们想到了开三倍空间来维护x的天敌,同伙和食物。     ...
  • Deep_Kevin
  • Deep_Kevin
  • 2018-04-15 15:57:03
  • 17

[NOI2002]银河英雄传说,洛谷之提高历练地,并查集

正题      第四题:[NOI2002]银河英雄传说      这道题看上去很简单,做起来却对ij之间飞船的数量给搞混了。那么我们很容易就可以知道,要求ij之间的飞船个数,只要我们知道j前面有多少飞...
  • Deep_Kevin
  • Deep_Kevin
  • 2018-04-15 16:38:12
  • 24

修复公路,洛谷之提高历练地,并查集

正文      第一题:修复公路      这道题很明显啊,把边排一次序,用并查集来维护所在即可,(最小瓶颈生成树?=最小生成树)。。      所以记录一下最大值即可#include&amp;lt;...
  • Deep_Kevin
  • Deep_Kevin
  • 2018-04-15 15:46:24
  • 8

洛谷 P1197 [JSOI2008] 星球大战

并查集+思路
  • SenyeLicone
  • SenyeLicone
  • 2016-11-15 11:43:45
  • 337

【洛谷P1197】[JSOI2008]星球大战 反向并查集+统计连通块

题目描述很久以前,在一个遥远的星系,一个黑暗的帝国靠着它的超级武器统治者整个星系。某一天,凭着一个偶然的机遇,一支反抗军摧毁了帝国的超级武器,并攻下了星系中几乎所有的星球。这些星球通过特殊的以太隧道互...
  • zhhe0101
  • zhhe0101
  • 2016-12-28 10:14:39
  • 175

[JSOI2008]最大数,洛谷之提高历练地,线段树树状数组基础

正题      第一题:[JSOI2008]最大数      这道题是可以用倍增维护最大值来做,每次加入一个点,维护一遍倍增数组(ST表)logn复杂度。      我也没拦着你用线段树加点。。。#i...
  • Deep_Kevin
  • Deep_Kevin
  • 2018-04-19 09:23:50
  • 15
收藏助手
不良信息举报
您举报文章:[JSOI2008]星球大战,洛谷之提高历练地,并查集
举报原因:
原因补充:

(最多只允许输入30个字)