草稿

本文探讨了使用线性规划解决任务调度问题的方法,通过构建数学模型,运用单纯形算法求解最优解,实现资源的有效分配。代码示例展示了如何初始化问题参数,设置约束条件,并迭代求解直到达到最优解。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;

int n,T,R,m;
struct node{
	int p,s,t,id;
	bool operator<(const node e)const{
		return s<e.s;
	}
}q[1010];
double a[4010][1010],eps=1e-5;
double b[4010][1010];
int ans,an[1010],last[1010];
int id[2010];

void pivot(int x,int y){
	swap(id[n+x],id[y]);
	double temp=a[x][y];
	for(int i=0;i<=n;i++) a[x][i]/=temp;
	a[x][y]=1/temp;
	for(int i=0;i<=m;i++) if(x!=i){
		temp=a[i][y];a[i][y]=0;
		for(int j=0;j<=n;j++) a[i][j]-=temp*a[x][j];
	}
}

void simplex(){
	int x,y;
	double mmin;
	while(1){
		x=y=0;
		for(int i=1;i<=n;i++) if(a[0][i]>eps) {y=i;break;}
		if(!y) break;
		mmin=(double)1e18;
		for(int i=1;i<=m;i++) if(a[i][y]>eps && a[i][0]/a[i][y]<mmin) {x=i;mmin=a[i][0]/a[i][y];}
		pivot(x,y);
	}
	return ;
}

void dfs(int x){
	for(int i=0;i<=m;i++) 
		for(int j=0;j<=n;j++) 
			a[i][j]=b[i][j];
	simplex();
	if(-a[0][0]<=ans) return ;
	if(x==n+1){
		ans=(int)-a[0][0];
		for(int i=1;i<=m;i++) an[id[n+i]]=(int)a[i][0];
		return ;
	}
	m++;b[m][x]=1;b[m][0]=0;
	dfs(x+1);
	b[m][x]=-1;b[m][0]=-1;
	dfs(x+1);m--;
}

int main(){
	scanf("%d %d %d\n",&n,&T,&R);ans=R;
	for(int i=1;i<=n;i++) scanf("%d %d %d",&q[i].s,&q[i].p,&q[i].t),q[i].id=i;
	sort(q+1,q+1+n);
	a[0][0]=-R;
	for(int i=1;i<=n;i++) a[0][i]=q[i].p;
	for(int i=1;i<=n;i++){
		a[i][i]=q[i].s;
		for(int j=1;j<i;j++) a[i][j]=-q[j].p;
		a[i][0]=R;
	}
	for(int i=1;i<=n;i++) id[i]=i;
	for(int i=1;i<=n;i++) a[n+1][i]=q[i].t;a[n+1][0]=T;
	for(int i=1;i<=n;i++) a[n+1+i][i]=1,a[n+1+i][0]=1;
	m=n+n+1;
	for(int i=0;i<=m;i++)
		for(int j=0;j<=n;j++) b[i][j]=a[i][j];
	dfs(1);
	printf("%d\n",ans);
	for(int i=1;i<=n;i++) if(an[i]) last[++last[0]]=q[i].id;
	for(int i=1;i<=last[0];i++) printf("%d ",last[i]);
}

\sum_{i=1}^{A}P^i[m],(A<=m) \\=\frac{P^{A+1}}{P-1}[m]

Ans(k)=\sum_{i=1}^{n}a(i)^k

F(x)=\sum_{i=1}^n\sum_{j=0}a_i^j*x^j \\=\sum_{i=1}^n\frac{1}{1-a_ix} \\=n-x\sum_{i=1}^n \frac{-a_i}{1-ai_x} \\=n-x\sum_{i=1}^n [\ln(1-a_ix)]' \\=n-x(\ln(\prod_{i=1}^n(1-a_ix))) \\=n-x(\frac{1}{\prod_{i=1}^n(1-a_ix)} \times (\prod_{i=1}^n(1-a_ix)')

\sum_{i=0}^n [\frac{a*i}{c}]=\frac{n*(n+1)}{2}[\frac{a}{c}]

\sum_{a=1}^n\sum_{b=1}^n\sum_{c=1}^n\sum_{d=1}^nA_aB_bC_cD_dE_{\gcd(a,b)}F_{\gcd(b,c)}G_{\gcd(c,d)}H_{gcd(a,d)} \\=\sum_{e=1}^n\sum_{f=1}^n\sum_{g=1}^n\sum_{h=1}^nE_eF_fG_gH_h\sum_{a=1}^{\frac{n}{[e,h]}}\sum_{b=1}^{\frac{n}{[e,f]}}\sum_{c=1}^{\frac{n}{[f,g]}}\sum_{d=1}^{\frac{n}{[g,h]}}A_{a*[e,h]}B_{b*[e,f]}C_{c*[f,g]}D_{d*[g,h]} \\=

内容概要:本文介绍了DeepSeek在职场中的应用,从提示语技巧到多场景应用,涵盖了DeepSeek的基础模型(V3)、深度思考模型(R1)及其联网搜索功能。文中详细描述了DeepSeek的模型对比,包括操作规范、结果导向、路径灵活性、响应模式和风险特征等方面。此外,还探讨了DeepSeek在制作可视化图表、PPT、海报、视频以及批量生成新媒体文案等具体应用场景中的使用方法和技巧。最后,文章展示了DeepSeek在市场调查、AI应用开发等方面的应用实例,强调了其在人机协同和共生领域的潜力。 适用人群:适用于希望提升工作效率和创新能力的职场人士,特别是从事数据分析、内容创作、市场营销、AI开发等领域的专业人士。 使用场景及目标:①通过DeepSeek的基础模型(V3)和深度思考模型(R1)进行高效的任务处理和复杂推理;②利用DeepSeek制作可视化图表、PPT、海报和视频,提高内容创作的质量和效率;③通过DeepSeek进行市场调查和AI应用开发,优化业务流程并推动创新。 其他说明:DeepSeek不仅提供了强大的AI工具,还强调了人机协同的重要性。用户在使用过程中应注意操作规范,结合实际需求选择合适的模型,并充分利用DeepSeek的各项功能来实现高效的职场应用。文中还提到了多个国际竞赛中的获奖情况,展示了DeepSeek团队在AI领域的卓越实力。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值