- 博客(6)
- 收藏
- 关注
原创 告别重复解释:让AI记住你的项目背景和编码习惯
作为开发者,我们与AI的协作越来越频繁。传统AI每次都要"重新认识"你,而PromptX让AI真正成为了你的。
2025-05-23 16:16:33
300
原创 AI的“记忆碎片“:探索大型语言模型的失忆难题
本文探讨了大型语言模型中的"记忆碎片"问题及其解决思路。我们分析了AI失忆现象的本质——上下文窗口的固有限制导致的渐进式记忆退化,并追踪了解决方案从简单到复杂的演进过程:从静态密钥到动态算法,再到语言表达,最终发展出元信息嵌入机制。特别值得注意的是,解决AI记忆问题不仅是技术挑战,更是哲学问题。《出师表》元信息嵌入方案不仅提供了技术解决路径,还启发我们思考记忆与身份、意识与连续性的深层关联。这些思考对未来AI Agent系统设计有重要启示,引导我们构建多层记忆架构、主动记忆管理和自我状态监测机制。
2025-04-11 23:41:47
1925
原创 Deepractice AI 工作流任务框架:OES
目标(Objective): 明确定义AI任务的具体预期结果环境(Environment): 容器化封装AI执行任务所需的全部上下文、约束和资源成功标准(Success Criteria): 客观定义任务完成的验收条件OES框架不是简单地改进提示词,而是从根本上重构AI工作流的结构,将每个AI任务视为独立、可复用的"工作容器"。在AI技术飞速发展的今天,如何有效管理和组织AI工作流将成为决定AI实际价值的关键因素。OES框架通过借鉴容器化思想,为AI工作流提供了一种结构化、系统化的解决方案。
2025-04-08 19:46:08
811
原创 DPML 一种结构化的 Prompt 标记语言设计方案
DPML中的通用属性是可以应用于多种标签的核心属性,用于提供标签的元数据和行为控制:id: 标签的唯一标识version: 版本号ref: 引用,支持组件的相对路径,绝对路径,id引用,http引用schema: 提供验证规则元文档唯一性范围id在单个DPML文档内必须唯一不同文档中可以使用相同的id命名规则必须以字母或下划线开头只能包含字母、数字、下划线、连字符和点区分大小写最佳实践使用有意义的描述性名称可采用层次结构(例如。
2025-04-08 13:56:18
1648
原创 Deepractice 4P理论:AI工程的系统性解决方案
Deepractice 4P理论是对提示工程设计模式的系统性扩展,它填补了从提示词设计到实际应用之间的鸿沟,建立了一条从Pattern到Product的完整价值链。通过明确的阶段划分、转化条件和反馈机制,4P理论不仅提供了AI工程的结构化方法,也为企业AI能力建设提供了系统化路径。在AI技术日益普及的今天,掌握这一方法论将成为组织构建高效AI应用的关键优势。
2025-03-29 17:25:49
888
原创 Deepractice Prompt设计模式:从认知框架到实用系统
Deepractice提示工程设计模式从初版的理论框架发展为全面、系统、可操作的实用体系,标志着提示工程从"术"到"道"的升级。通过十大核心提示词的协同应用,我们能够构建复杂、高效、持续进化的AI协作系统,真正释放大模型的潜力。在AI加速变革各行各业的今天,掌握系统化的提示工程方法论不仅是技术优势,更是竞争力的关键来源。Deepractice将持续深耕提示工程领域,为构建更智能、更专业的AI交互体验贡献力量。本文由Deepractice团队原创,专注于AI交互体验的提升与创新。
2025-03-23 17:43:11
1386
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人