笑脸数据集和口罩数据集

本文介绍了如何处理笑脸数据集(genki4k)和口罩数据集,涉及SVM、CNN模型的训练与测试。首先,对数据集进行正负样本划分,并进行预处理。接着,构建小型卷积网络,训练模型并评估精度。同时,展示了使用摄像头采集人脸和训练口罩检测模型的过程,最终能成功识别戴口罩和未戴口罩的人脸。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

掌握笑脸数据集(genki4k)正负样本的划分、模型训练和测试的过程(至少包括SVM、CNN

训练数据集

导入keras:
在这里插入图片描述

需要导入的库:

import keras
import os, shutil
from keras import layers
from keras import models
from keras import optimizers
from keras.preprocessing.image import ImageDataGenerator
import matplotlib.pyplot as plt
————————————————

效果:
在这里插入图片描述

对数据集设置训练测试集、正负样本路径

train_dir='./smile/train'
train_smiles_dir='./smile/train/smile'
train_unsmiles_dir='./smile/train/unsmile'
test_dir='./smile/test'
test_smiles_dir='./smile/test/smile'
test_unsmiles_dir='./smile/test/unsmile'

在这里插入图片描述

定义打印出训练集和测试集的正负样本尺寸函数

在这里插入图片描述# 定义构建小型卷积网络并进行数据集预处理函数

在这里插入图片描述

输入函数(函数包括对模型的训练&#x

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值