- 博客(7)
- 收藏
- 关注
原创 支持向量机SVM简单介绍及代码实践
支持向量机是一种灵活且强大的机器学习算法,它通过最大化间隔和使用核技巧,能够有效地处理线性和非线性问题。在二维空间中,超平面是一个线,而在更高维空间中,它是一个平面或更一般的线性边界。核函数是SVM处理非线性问题的关键。RBF核,也称为高斯核,是一种非常流行的核函数,它测量两个数据点之间的欧几里得距离。SVM的目标是找到一个超平面,使得两个类别的数据点被分隔开,并且这个间隔。ν-SVM是另一种变体,它使用参数ν来控制不满足间隔要求的数据点的比例。C-SVM是最基本的SVM形式,通过参数C控制软间隔的大小。
2024-06-11 16:05:47 729
原创 逻辑回归--理论介绍及代码实践
逻辑回归是一种预测分析方法,用于估计一个事件的发生概率。它通过使用逻辑函数将线性回归的输出映射到0或1(或更普遍的,到0和1之间的概率)来实现这一点。
2024-06-10 00:38:39 573
原创 朴素贝叶斯分类器:简单而强大的分类工具
朴素贝叶斯分类器是基于贝叶斯定理的分类算法。贝叶斯定理是概率论中描述两个条件概率关系的公式,表示为:在分类问题中,我们通常使用贝叶斯定理来计算给定观测数据特征X和类别标签C的概率,即后验概率𝑃(𝐶∣𝑋)P(C∣X)。朴素贝叶斯通过假设特征之间相互独立(这就是“朴素”一词的由来),简化了后验概率的计算。
2024-05-29 18:11:45 1223
原创 决策树简单介绍及实践
决策树是一种直观的模型,通过树状结构表示决策过程。每个内部节点代表一个特征上的判断,每个分支代表一个判断结果的输出,每个叶节点代表最终决策结果。决策树作为一种强大的机器学习算法,以其直观性和易于实现的特点,在数据科学领域占有一席之地。尽管存在一些局限性,但通过合适的优化和集成方法,决策树可以成为解决复杂问题的有效工具。
2024-04-30 15:55:32 773
原创 分类模型评估指标以及ROC曲线和PR曲线
选择合适的评估指标取决于具体的应用场景和业务需求。例如,如果我们更关心减少假正例的数量,可能会更关注精确率;如果我们希望尽可能多地识别出所有正类样本,召回率可能更为重要。在实际应用中,通常会结合多个指标来综合评估模型的性能。
2024-04-16 16:58:28 897
原创 KNN/K邻近算法的简单理论及python实现
在Python中实现KNN算法,我们通常会使用`scikit-learn`库,它提供了一个简单易用的KNN实现。以下是一个使用`scikit-learn`中的`KNeighborsClassifier`和`KNeighborsRegressor`进行分类和回归的基本示例。虽然它在处理大数据集时可能会遇到性能瓶颈,但通过合理的优化和选择合适的参数,KNN仍然是一个非常有用的工具。对于一个新的数据点,我们想要预测它的标签或数值,我们只需查看训练集中与之最相似的K个数据点,然后根据这些邻居的信息来做出预测。
2024-04-16 13:07:43 657
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人