代码随想录算法训练营第二十三天|Leetcode669 修剪二叉搜索树、Leetcode108 将有序数组转换为二叉搜索树、Leetcode538 把二叉搜索树转换为累加树
● Leetcode669 修剪二叉搜索树
题目链接:Leetcode669 修剪二叉搜索树
视频讲解:代码随想录|修剪二叉搜索树
题目描述:给你二叉搜索树的根节点 root ,同时给定最小边界low 和最大边界 high。通过修剪二叉搜索树,使得所有节点的值在[low, high]中。修剪树 不应该 改变保留在树中的元素的相对结构 (即,如果没有被移除,原有的父代子代关系都应当保留)。 可以证明,存在 唯一的答案 。
所以结果应当返回修剪好的二叉搜索树的新的根节点。注意,根节点可能会根据给定的边界发生改变。
示例 1:
输入:root = [1,0,2], low = 1, high = 2
输出:[1,null,2]
示例 2:
输入:root = [3,0,4,null,2,null,null,1], low = 1, high = 3
输出:[3,2,null,1]
提示:
· 树中节点数在范围 [1, 104] 内
· 0 <= Node.val <= 104
· 树中每个节点的值都是 唯一 的
· 题目数据保证输入是一棵有效的二叉搜索树
· 0 <= low <= high <= 104
● 解题思路
修建二叉搜索树本质上也是在删除结点,但删除结点从一个变成了多个,我们需要将[low, high]之外的所有结点删除,同时还要保持二叉搜索树的结构。
整体解题思路: 二叉搜索树的特性为左子树结点均小于根结点,右子树结点均大于根结点。遍历到结点cur
时,当cur->val < low
,则其左子树元素均小于low,需要直接向删除结点的右子树遍历;而当 cur->val > high
,其右子树元素均大于high,需要直接向删除节点的左子树遍历。
方法一:递归
在整体解题思路的基础上,我们需要注意:
//对删除结点的左子树进行剪枝
if(root->val < low)
{
TreeNode* right = trimBST(root->right, low, high);
return right;
}
//对删除结点的右子树进行剪枝
if(root->val > high)
{
TreeNode* left = trimBST(root->left, low, high);
return left;
}
这里需要先将左右结点保留,因为对于删除结点而言,其左子树或者右子树能肯定排除在范围外,但剩余一部分子树的元素仍然需要进行判断是否满足条件,需要继续向下修建,保留返回内的元素结点。
方法二:迭代
使用迭代完成修建二叉搜索树,我们需要进行以下:
(1)当root->val
不在范围内,我们需要将root
向左移动或者向右移动,使其在[low, high]中;
(2)当发现结点cur和cur->right
存在且cur->val < low
时,我们将右孩子连接到给cur的父结点
,然后移动cur
向下继续判断修剪;
(3)当发现结点cur和cur->left
存在且cur->val > high
时,我们将左孩子连接到cur的父结点,然后向下移动。
● 代码实现
方法一:递归
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
TreeNode* trimBST(TreeNode* root, int low, int high) {
if(!root) return nullptr;
//对删除结点的左子树进行剪枝
if(root->val < low)
{
TreeNode* right = trimBST(root->right, low, high);
return right;
}
//对删除结点的右子树进行剪枝
if(root->val > high)
{
TreeNode* left = trimBST(root->left, low, high);
return left;
}
//递归修剪左右子树
root->left = trimBST(root->left, low, high);
root->right = trimBST(root->right, low, high);
return root;
}
};
方法二:迭代
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
TreeNode* trimBST(TreeNode* root, int low, int high) {
if(!root) return nullptr;
//将root移动到[low, high]范围内
while(root && (root->val < low || root->val > high))
{
if(root->val < low) root = root->right;
else root = root->left;
}
TreeNode* cur = root;
//删除结点,但保留右子树进行后续处理
while(cur != nullptr)
{
while(cur->left != nullptr && cur->left->val < low)
{
cur->left = cur->left->right;
}
cur = cur->left;
}
//重置cur到根结点进行右子树修建
cur = root;
删除结点,但保留左子树进行后续处理
while(cur != nullptr)
{
while(cur->right != nullptr && cur->right->val > high)
{
cur->right = cur->right->left;
}
cur = cur->right;
}
return root;
}
};
● Leetcode108 将有序数组转换为二叉搜索树
题目链接:Leetcode108 将有序数组转换为二叉搜索树
视频讲解:代码随想录|将有序数组转换为二叉搜索树
题目描述:给你一个整数数组 nums ,其中元素已经按 升序 排列,请你将其转换为一棵 高度平衡 二叉搜索树。
高度平衡 二叉树是一棵满足「每个节点的左右两个子树的高度差的绝对值不超过 1 」的二叉树。
示例 1:
输入:nums = [-10,-3,0,5,9]
输出:[0,-3,9,-10,null,5]
解释:[0,-10,5,null,-3,null,9] 也将被视为正确答案:
示例 2:
输入:nums = [1,3]
输出:[3,1]
解释:[1,null,3] 和 [3,1] 都是高度平衡二叉搜索树。
提示:
· 1 <= nums.length <= 104
· -104 <= nums[i] <= 104
· nums 按 严格递增 顺序排列
● 解题思路
对于构建平衡的二叉搜索树,因为给定的数组按严格递增顺序排列,我们在构建二叉搜索树的过程中不需要担心太多,重点在于我们如何构建的二叉搜索树是平衡的?
最简单的方式就是左子树和右子树在构建过程中保持元素基本相等,也就是说我们将数组的中位数作为根,就能保证其左右元素相等,然后递归构建左右子树即可。
● 代码实现
//递归
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
TreeNode* traversal(vector<int>& nums, int left, int right)
{
if(left > right) return nullptr;
int mid = left + (right - left) / 2;
TreeNode* root = new TreeNode(nums[mid]);
root->left = traversal(nums, left, mid - 1);
root->right = traversal(nums, mid + 1, right);
return root;
}
TreeNode* sortedArrayToBST(vector<int>& nums) {
return traversal(nums, 0, nums.size() - 1);
}
};
● Leetcode538 把二叉搜索树转换为累加树
题目链接:Leetcode538 把二叉搜索树转换为累加树
视频讲解:代码随想录|把二叉搜索树转换为累加树
题目描述:给出二叉 搜索 树的根节点,该树的节点值各不相同,请你将其转换为累加树(Greater Sum Tree),使每个节点 node 的新值等于原树中大于或等于 node.val 的值之和。
提醒一下,二叉搜索树满足下列约束条件:
节点的左子树仅包含键 小于 节点键的节点。
节点的右子树仅包含键 大于 节点键的节点。
左右子树也必须是二叉搜索树。
注意:本题和 1038: https://leetcode-cn.com/problems/binary-search-tree-to-greater-sum-tree/ 相同
示例 1:
输入:[4,1,6,0,2,5,7,null,null,null,3,null,null,null,8]
输出:[30,36,21,36,35,26,15,null,null,null,33,null,null,null,8]
示例 2:
输入:root = [0,null,1]
输出:[1,null,1]
示例 3:
输入:root = [1,0,2]
输出:[3,3,2]
示例 4:
输入:root = [3,2,4,1]
输出:[7,9,4,10]
提示:
· 树中的节点数介于 0 和 104 之间。
· 每个节点的值介于 -104 和 104 之间。
· 树中的所有值 互不相同 。
· 给定的树为二叉搜索树。
● 解题思路
关于把二叉搜索树转换为累加树 可以理解为中序遍历数组中,从最后一个元素开始,不断将结果累加到前一个元素上,以示例一为例:
中序遍历输出:0 1 2 3 4 5 6 7 8
我们从最后一个值开始向前累加得到:36 36 35 33 30 26 21 15 8
不难看出需要采用的遍历顺序还是中序遍历
,只不过需要做一点小小的改动,先遍历右,再处理中,最后遍历左
。
有了大体思路,我们需要考虑单层处理逻辑:
我们需要定义一个pre从最后一个元素开始记录其数据值,然后将遍历结点直接与pre累加,再令pre记录累加后的cur->val帮助后续结点进行累加。
使用迭代法解决思路相同,需要使用栈模拟递归的过程,同样需要pre记录前面累加的值。
● 代码实现
方法一:递归
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
int pre;
void traversal(TreeNode* cur)
{
if(cur == nullptr) return;
traversal(cur->right); //右
cur->val += pre;
pre = cur->val;//中
traversal(cur->left);
}
TreeNode* convertBST(TreeNode* root) {
if(root == nullptr) return nullptr;
traversal(root);
return root;
}
};
方法二:迭代
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
int pre;
TreeNode* convertBST(TreeNode* root) {
if(root == nullptr) return nullptr;
stack<TreeNode*> st;
pre = 0;
TreeNode* cur = root;
while(cur != nullptr || !st.empty())
{
if(cur)
{
st.push(cur);
cur = cur->right; //右
}
else
{
cur = st.top(); st.pop();
cur->val += pre;
pre = cur->val; //中
cur = cur->left;
}
}
return root;
}
};