【数据结构】选择排序

🍬个人主页:Yanni.—

🌈数据结构:Data Structure.​​​​​​

🎂C语言笔记:C Language Notes

🏀OJ题分享: Topic Sharing

目录

前言:

基本思想

直接选择排序

思路分析

 代码实现

堆排序

知识补充

代码思路分析

向下调整算法

建堆算法

堆排序实现

代码实现


前言:

在前面学习了直接插入排序和希尔排序,今天实现选择排序中的直接选择排序和堆排序。堆排序的效率非常高,认真学习之后会学到一个很好的排序方法!

基本思想

每一次从待排序的数据中选出最小(或最大)的一个元素,存放在序列的起始位置,知道全部待排序的数据元素排完。

直接选择排序

思路分析

  1.在元素集合array[i]--array[n-1]中选择关键码最大()的数据元素
2.若它不是这组元素中的最后一个(第一个)元素,则将它与这组元素中的最后一个(第一个)元素交换
3.在剩余的array[i]--array[n-2]array[i+1]--array[n-1])集合中,重复上述步骤,直到集合剩余1个元素 

 代码实现

这里的代码优化了一下,在正常的普通直接选择排序选择出最小的排在第一位情况下,我这里用了头begin和尾end可以同时把最大值和最小值选出来,然后分别给到相应的位置,这样时间上会比普通的快上一倍。 

void SelectSort(int* a, int n)
{
	int begin = 0;
	int end = n-1;
	while (begin < end)
	{
		int maxi = begin;
		int mini = begin;
		for (int i = begin; i <= end; i++)
		{
			if (a[i] < a[mini])
			{
				mini = i;
			}
			if (a[i] > a[maxi])
			{
				maxi = i;
			}
		}
		Swap(&a[begin], &a[mini]);
		//如果maxi与begin位置重叠,需要矫正
		if (begin == maxi)
		{
			maxi = mini;
		}
		Swap(&a[end], &a[maxi]);
		begin++;
		end--;
	}
}

堆排序

知识补充

1.堆的逻辑结构是一颗完全二叉树

2.堆的物理结构是一个数组

其中父子节点的关系:(这个很重要!!!

leftchild = parent*2 +1

rightchile = parent*2 +2

parent = (child-1)/2

      

 要用到堆排序,首先要知道两个重要的概念大顶堆和小顶堆。

大顶堆(最大堆):所有的父亲大于等于孩子。

小顶堆(最小堆):所以的父亲小于等于孩子。

代码思路分析

向下调整算法

向下调整算法的前提是左右子树必须是小堆(栈顶的数据是最小的)或着大堆(栈顶数据是最大的)。

 如图,图中左右子树都是小堆,那么就可以使用向下调整。

1.将孩子中最大的选出来。

2.将孩子中最大的与父亲比较大小,如果实现的是建小堆的话,孩子比父亲小,孩子就与父亲交换位置。孩子比父亲大,反之。

void AdjustDown(int* a, int n, int root)
{
	int parent = root;
	int child = parent*2 + 1;//默认是左孩子 因为右孩子等于左孩子加一
	while (child < n)
	{
		//选择出孩子中最大的一个去与父母比较
		if (child + 1 < n && a[child] < a[child + 1])
		{
			child += 1;
		}
		if (a[child] > a[parent])
		{
			Swap(&a[child], &a[parent]);
			parent = child;
			child = parent*2 + 1;
		}
		else
		{
			break;
		}
	}
}

建堆算法

如下图,我们知道了向下调整算法,可如果左右子树不是小堆或大堆呢?我们该怎么实先小顶堆或者大顶堆。

可以发现,如果从8这个最后一个父亲节点开始向下调整,再到7,2,5,3。那么就可以实现了。

总而言之就是建堆的思路就是:从倒数第一个非叶子节点开始调整。

for (int i = (n - 1 - 1)/2; i >= 0; i--)
{
	AdjustDown(a, n, i);
}

图中n-1表示最后一个节点,根据parent = (child -1)/2可以计算出倒数第一个非叶子节点。

堆排序实现

接下来将数据排成升序,那么建堆是建小堆还是建大堆,这就要我们去分析了。

因为如果是建小堆,那么堆顶的数就是最小的,会被直接选择出去作为第一个数,那么只能第二个数作为根,这样剩下的数关系就全乱了,再重新建堆,时间复杂度就会增加跟多,那就失去了堆排序的意义。所以我们这里建大堆。

建大堆之后,再将最大的数据换到最后,不把他看作堆里面的数据,然后进行向下调整算法就可以选出次小,次小换到倒数第二个位置,再继续调堆,选出第三小....

int end = n - 1;
while (end > 0)
{
	Swap(&a[0], &a[end]);
	AdjustDown(a, end, 0);
	end--;
}

代码实现

//向下调整
void AdjustDown(int* a, int n, int root)
{
	int parent = root;
	int child = parent*2 + 1;//默认是左孩子 因为右孩子等于左孩子加一
	while (child < n)
	{
		//选择出孩子中最大的一个去与父母比较
		if (child + 1 < n && a[child] < a[child + 1])
		{
			child += 1;
		}
		if (a[child] > a[parent])
		{
			Swap(&a[child], &a[parent]);
			parent = child;
			child = parent*2 + 1;
		}
		else
		{
			break;
		}
	}
}
//堆排序
//升序  建大堆 整体时间复杂度o(N*logN)
void HeapSort(int* a, int n)
{
	//建堆,时间复杂度为o(N)
	for (int i = (n - 1 - 1)/2; i >= 0; i--)
	{
		AdjustDown(a, n, i);
	}
	// 排升序,建大堆还是小堆?建大堆
	int end = n - 1;
	while (end > 0)
	{
		Swap(&a[0], &a[end]);
		AdjustDown(a, end, 0);
		end--;
	}
}

好啦,这就是今天学习的分享啦!看到希望大家的三连呀!

如果有不当之处,欢迎大佬指正!

评论 39
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值