学兔兔VIP
码龄7年
关注
提问 私信
  • 博客:27,230
    27,230
    总访问量
  • 23
    原创
  • 270,668
    排名
  • 271
    粉丝
  • 3
    铁粉
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:陕西省
  • 加入CSDN时间: 2017-12-18
博客简介:

学兔兔的博客

查看详细资料
  • 原力等级
    当前等级
    3
    当前总分
    424
    当月
    2
个人成就
  • 获得295次点赞
  • 内容获得69次评论
  • 获得334次收藏
创作历程
  • 13篇
    2024年
  • 9篇
    2023年
  • 1篇
    2022年
成就勋章
TA的专栏
  • 智能算法在故障诊断与状态评估方面的应用
    付费
    14篇
  • 最新科技动态
    2篇
  • 异常检测技术
    5篇
  • 迁移学习
    1篇
  • 人工智能
    1篇
  • 信号处理
    6篇
  • 多传感器数据融合技术
    7篇
  • 深度学习
    3篇
兴趣领域 设置
  • 人工智能
    机器学习深度学习神经网络图像处理数据分析
创作活动更多

超级创作者激励计划

万元现金补贴,高额收益分成,专属VIP内容创作者流量扶持,等你加入!

去参加
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

竞争性自适应加权抽样结合偏最小二乘回归(CARS-PLS)在多变量分析中的应用(附MATLAB软件包)

软件包包含了一系列用于PLSR建模、CARS特征选择和模型验证的函数,同时也提供了详细的文档和示例脚本,帮助用户更好地理解和应用CARS-PLS方法。通过结合CARS的自适应特征选择能力和PLSR的强大建模能力,CARS-PLS能够有效地处理和分析各种复杂的数据集,为科学研究和工业应用提供了有力的支持。与传统的特征选择方法不同,CARS不依赖于固定的阈值或标准,而是根据变量在模型中的贡献来动态调整权重,从而提高特征选择的准确性和灵活性。模型优化:根据验证结果调整和优化模型,提高模型的预测准确性和稳健性。
原创
发布博客 2024.04.20 ·
1071 阅读 ·
16 点赞 ·
9 评论 ·
8 收藏

基于PCA和马氏距离的近红外光谱异常检测(附MATLAB程序)

本文将介绍如何利用主成分分析(PCA)和马氏距离结合,剔除NIR数据中的异常值。PCA是一种常用的降维技术,它可以将高维数据转化为低维数据,同时保留尽可能多的信息。在NIR数据中,由于特征(即波长)数量可能非常大,PCA可以有效地减少数据的维度。标准化是将数据转换为均值为0,标准差为1的形式,有助于提高PCA的效果。马氏距离是一种考虑了数据的协方差矩阵的距离度量,它可以提供更准确的距离评估。最后,为了直观地展示数据处理的效果,我们可以将原始NIR数据和去除异常值后的数据进行对比可视化。
原创
发布博客 2024.04.20 ·
994 阅读 ·
2 点赞 ·
0 评论 ·
5 收藏

迁移学习的最新进展和挑战

领域适应性问题是迁移学习中的一个关键问题,其目的是使源领域和目标领域的数据分布尽可能接近。数据不平衡问题是迁移学习中的一个关键问题,其目的是解决源领域和目标领域中数据分布不均衡的问题。迁移学习是指将一个领域(源领域)的知识应用到另一个领域(目标领域),以提高目标领域的学习性能。知识迁移问题是迁移学习中的一个关键问题,其目的是将源领域中的知识有效地迁移到目标领域。然而,迁移学习仍然面临着一些挑战,如领域适应性问题、知识迁移问题、计算资源问题、数据不平衡问题和可解释性问题等。一、迁移学习的最新进展。
原创
发布博客 2024.01.10 ·
1224 阅读 ·
14 点赞 ·
4 评论 ·
12 收藏

Every Nobody Is Somebody 「每小人物都能成大事」

Nobody NFT 的设计秉持了周星驰定义的小人物成大事的社区精神,我们鼓励人们不要被身份、地位等社会标签所局限,无论你在社会中扮演什么角色,只要愿意努力奋斗,都能在自身擅长的领域发光发热。是一款Web3共创平台,旨在为创作者提供一个交流和合作的场所,促进创意的产生和共享。通过该平台,创作者可以展示自己的作品,与其他创作者进行互动和合作,从而推动整个行业的发展。周星驰在讨论中强调了创意的重要性,他表示:“我深信好的创意来自民间,我也非常渴望能够挖掘出各个领域的高手,让他们有机会充分发挥他们的才华。
原创
发布博客 2024.01.10 ·
889 阅读 ·
18 点赞 ·
1 评论 ·
6 收藏

基于人工智能的电力设备老化和退化评估

基于人工智能的电力设备老化和退化评估发展前景:随着人工智能技术的不断发展和完善,基于人工智能的电力设备老化和退化评估技术将在未来的电力系统中发挥越来越重要的作用。这种技术利用大量的数据和先进的算法,可以对电力设备的老化和退化进行快速、准确和客观的评估,为电力设备的维护和管理提供了有力的支持。随着电力设备的使用时间的增长,其性能会逐渐下降,这就是所谓的老化和退化。老化和退化的传统预防和控制:对电力设备的老化和退化进行评估后,还需要采取相应的预防和控制措施,以延长其使用寿命,保证电力系统的安全稳定运行。
原创
发布博客 2024.01.07 ·
799 阅读 ·
15 点赞 ·
2 评论 ·
20 收藏

循环平稳信号分析方法在旋转机械设备状态监测和故障诊断中的应用

现代信号分析与处理技术的本质从整体上来说可以用七个“非”字加以高度的概括,即:非线性、非因果、非最小相位系统、非高斯、非平稳、非整数维(分形)信号和非白色的加性噪声(有色噪声),随着各种新的信号处理方法的引入,如时频分析、小波分析、非线性时间序列分析等等,振动信号分析方法在非线性、非高斯、非最小相位信号处理方面有了一定的进步。能够提供较高的时频分辨率;总之,循环平稳信号分析方法是一种有效的特征提取技术,它能够有效地处理具有周期性和非平稳性的信号,为旋转机械设备状态监测和故障诊断提供了有力的技术支持。
原创
发布博客 2024.01.07 ·
893 阅读 ·
10 点赞 ·
1 评论 ·
11 收藏

四元数傅里叶变换(Quaternion Fourier Transforms) 在信号和图像处理中的应用

(1)线性性:对于任意两个信号或图像f(t)和g(t),它们的四元数傅里叶变换满足F(ω) = F1(ω) + F2(ω),其中F1(ω)和F2(ω)分别表示f(t)和g(t)的四元数傅里叶变换。(2)共轭对称性:对于任意信号或图像f(t),其四元数傅里叶变换F(ω)满足F*(-ω) = F(ω),其中F*(-ω)表示F(ω)的共轭。其中,F(ω)表示频率为ω的信号或图像的四元数傅里叶变换,f(t)表示原始信号或图像,e^(-iωt)表示复指数函数,t表示时间。一、四元数傅里叶变换的基本概念和原理。
原创
发布博客 2024.01.06 ·
1358 阅读 ·
8 点赞 ·
1 评论 ·
9 收藏

四元数分析(Quaternion Analysis)在故障诊断中的应用

故障分类和识别是故障诊断中的最终目标,它能够将故障样本划分为不同的类别,并对新的样本进行分类。同时,四元数分析还可以用于构建多维数据的分类器和识别器,提高分类和识别的准确性和可靠性。同时,四元数分析还可以用于提取多维数据的相关性和相关性特征,提高特征的表达能力和区分度。同时,四元数分析还可以用于信号的降噪和去趋势处理,提高信号的质量和可靠性。通过将电机的电流信号转换为四元数表示,可以更好地描述电流信号的非线性特性和时变特性。四元数的乘法运算可以看作是两个四元数之间的点积,而除法运算则是乘法运算的逆运算。
原创
发布博客 2024.01.06 ·
1028 阅读 ·
26 点赞 ·
0 评论 ·
9 收藏

D-S证据理论在故障检测中的应用与挑战

通过定义识别框架和命题、初始化BPA、计算证据体之间的距离、更新BPA以及重复迭代过程,我们可以逐步逼近真实的故障原因,提高故障检测的准确性和可靠性。通过综合考虑多个因素和解决实际问题,我们可以更好地应用D-S证据理论于故障检测和其他领域,为实际问题的解决提供有力的支持。通过定义识别框架和命题、初始化BPA、计算证据体之间的距离、更新BPA以及重复迭代过程,我们可以逐步逼近真实的故障原因,提高故障检测的准确性和可靠性。其次,证据的获取和处理也是一个关键的问题,需要确保证据的质量和可靠性。
原创
发布博客 2024.01.05 ·
691 阅读 ·
11 点赞 ·
3 评论 ·
12 收藏

非线性非平稳系统的动态递归挖掘用于特征提取和故障诊断

非线性非平稳系统是指系统的行为不仅受到输入信号的影响,还受到系统内部状态的影响。时变意味着系统的行为是随时间变化的,而不是固定不变的。通过递归地挖掘系统的状态,可以发现系统中的关键特征和规律,从而更好地理解和分析系统的行为。动态递归挖掘方法的核心思想是将系统的状态表示为一个树形结构,然后通过递归地挖掘这个树形结构,来提取系统的特征和规律。通过对系统的状态进行实时的递归挖掘,可以及时发现系统中的异常情况和故障。通过对系统的状态进行递归挖掘,可以发现系统中的关键特征和规律,从而更好地理解和分析系统的行为。
原创
发布博客 2024.01.05 ·
673 阅读 ·
19 点赞 ·
2 评论 ·
9 收藏

异质递归控制图在非线性动态过程中的在线监测和异常检测

通过将大数据的复杂性转化为可处理的形式,并采用非线性模型来构建控制图,可以实现对系统动态行为的实时监测和异常检测。4. 可视化效果好:异质递归控制图可以将系统的动态行为以图形化的方式展示出来,使得用户能够直观地了解系统的演化过程和异常情况。异质递归控制图的方法,用于非线性动态过程中的在线监测和异常检测。该方法基于异质递归的思想,将大数据的复杂性转化为可处理的形式,并通过控制图的方式对系统的动态行为进行监测和分析。通过对系统的状态变量进行实时监测,可以及时发现系统的异常情况,并采取相应的措施进行处理。
原创
发布博客 2024.01.05 ·
679 阅读 ·
10 点赞 ·
1 评论 ·
7 收藏

自编码器及其变体

为了解决这些问题,研究人员提出了许多自编码器的变体,如稀疏自编码器、去噪自编码器、卷积自编码器和变分自编码器等。与传统的自编码器不同,变分自编码器不仅学习输入数据的低维表示,还学习了潜在空间的先验分布。卷积自编码器是一种特殊的自编码器,它在编码器和解码器中使用卷积层来处理具有网格结构的数据,如图像。通过学习文本数据的低维表示,自编码器可以提取出文本数据的重要特征,从而实现对文本数据的语义理解和情感分析等任务。通过学习输入数据的低维表示,自编码器可以提取出图像的重要特征,从而实现对图像的有效处理。
原创
发布博客 2024.01.04 ·
555 阅读 ·
10 点赞 ·
1 评论 ·
7 收藏

利用自编码器(AutoEncoder, AE),对图像或信号进行降维和聚类,并将隐空间在2D空间中可视化,通过Matlab编程实现

首先,我们构建了一个具有两个隐藏层的自编码器。接下来,我们将训练好的自编码器应用于输入数据,得到了降维后的表示。最后,我们使用K-means算法对这些表示进行了聚类,并将聚类结果可视化在2D空间中。训练完成后,我们可以使用自编码器对新的数据进行降维和聚类。具体来说,我们可以将新数据输入到编码器中,得到其低维表示。然后,我们可以将这些低维表示输入到聚类算法中,如K-means或DBSCAN,以对这些表示进行聚类。为了实现这一点,我们需要准备一组训练数据,并使用这些数据来更新编码器和解码器的权重。
原创
发布博客 2024.01.04 ·
1434 阅读 ·
21 点赞 ·
2 评论 ·
9 收藏

工业大数据质量改善

数据降维将数据从高维映射至低维空间,克服了高维工业大数据分析所面临的“维数灾难”,常用的数据降维方法有主成分分析、投影寻踪、局部学习投影与核特征映射法等线性降维方法,以及多维尺度变换、等距映射法、局部线性嵌入法与拉普拉斯特征映射法等非线性降维方法。多源数据融合通过检测融合、估计融合、数据关联、异步信息融合和异类信息融合,充分挖掘分散、异构数据中所隐含的设备健康状态信息,常用的方法有D-S (Dempster-Shafer)证据理论、模糊集理论等融合算法。数据质量增强:包括多源数据融合与数据降维。
原创
发布博客 2023.08.11 ·
272 阅读 ·
2 点赞 ·
3 评论 ·
1 收藏

工业大数据驱动的智能故障诊断

由于机械数据规模庞大、信号来源分散、采样形式多变和随机因素干扰等原因,监测大数据呈现“碎片化”特点,因此需要依据一定的性能标准对数据进行筛选,剔除冗余和噪声数据,在不降低甚至提高某方面性能的基础上,最大限度地降低计算时间和空间的消耗,提高机械大数据的可靠性,夯实设备智能诊断理论与方法的数据基础。相关关系是指当一个数据变化时,另一个数据也可能随之变化,不论这两个数据是否有必然联系,相关关系背后的数学描述都是直接的、可视的,可以借助计算技术和数据分析工具轻易地获取数据间的这一关系。(3)大数据智能诊断。
原创
发布博客 2023.08.11 ·
680 阅读 ·
0 点赞 ·
1 评论 ·
1 收藏

信号处理赋能深度学习及其在智能诊断中的应用

总之,通过将信号处理技术应用于深度学习模型的特征提取、优化算法和解释性分析中,我们可以实现可解释的深度学习,并将其应用于智能诊断领域中。通过使用信号处理技术对深度学习模型的结果进行可视化和解释性分析,可以使得医生和其他决策者更加清晰地理解模型的预测结果,并做出更加准确和可靠的诊断决策。本文探讨了信号处理技术在深度学习中的应用,基于信号处理的深度学习模型,可以有效地提高智能诊断的准确性和效率,为医疗领域的智能诊断提供了一种新的思路和技术支持。其次,我们将信号处理技术应用于深度学习模型的优化算法中。
原创
发布博客 2023.07.10 ·
541 阅读 ·
6 点赞 ·
7 评论 ·
5 收藏

基于小波特征提取的GWO优化LSTM的故障诊断研究

通过对西储大学轴承数据的实验分析,将故障数据和正常数据分别输入到GWO-LSTM模型中进行训练和测试,能够实时准确地识别轴承的故障状态。通过对振动信号进行降噪和特征提取,结合了LSTM神经网络和GWO算法的优势,可以增强对轴承故障的准确诊断和预测能力。小波包降噪的优势:小波包降噪方法通过将原始信号分解为多个子带,不同子带对应于不同频率的信号成分,从而可以有效地过滤掉噪声,提高信号与噪声的信噪比。复杂的故障特征:轴承故障常伴随着振动信号的变化,这些变化包含丰富的信息,可以用于诊断和判断轴承的健康状态。
原创
发布博客 2023.07.09 ·
247 阅读 ·
3 点赞 ·
4 评论 ·
3 收藏

Dempster-Shafer (D-S)证据理论

自从上世纪70年代,A.P.Dempster提出了证据理论的雏形,而后他的学生G.Shafer在其研究的基础上加以完善和发展,形成了现在的证据理论,该理论针对于不确定问题的处理,区分不确定信息与未知信息对系统的影响,从而可以更好的处理多来源的相互独立的证据源的信息,有效消除证据的片面不确定性,使得到更加准确的结果。在证据理论的发展过程中,其在理论水平主要有两个问题:一是当证据中存在相违背的信息时,得到的结果可能会产生悖论;
原创
发布博客 2023.03.26 ·
2503 阅读 ·
22 点赞 ·
6 评论 ·
27 收藏

故障诊断的信息融合方法

基于迁移学习的小样本多传感器数据融合方法主要优点是能够在非常少量的训练数据上,完成多传感器数据的融合任务,同时,能够从大规模数据中减少过拟合问题,提高模型的泛化性能。(4)融合结果的处理和优化:多传感器数据的融合结果通常是多维度的,因此可以采用聚类或者降维等方法,将其转化为二维图像或scatter图等形式进行可视化和处理,从而更好地揭示不同传感器之间的相关性。模糊信息融合故障诊断方法,是一种基于模糊逻辑的故障诊断方法,其主要思想是通过模糊推理将多源不确定性信息进行融合,从而提高故障诊断的准确性和可靠性。
原创
发布博客 2023.03.26 ·
1934 阅读 ·
15 点赞 ·
2 评论 ·
25 收藏

基于D-S证据理论的多传感器数据融合方法在故障诊断中的应用

在汽轮发电机组的故障诊断中,传感器是汽轮发电机组中必不可少的部件之一,它们能够向我们反馈各种参数和状态,多传感器数据从多个方面获取关于同一对象的信息并加以综合利用,以提高诊断效率,多传感器数据融合能够使得诊断更加准确和可靠。然而,由于传感器本身的限制和不同传感器之间的差异,即使我们获得了大量的数据,也很难得到完全准确的结论。因此,为了将这些数据融合起来,以便得出比较可靠的诊断结果,就需要采用决策级融合的方法。在决策级融合中,我们需要根据一定的准则,对每个决策进行评估和决策,以便选择最优的决策。
原创
发布博客 2023.03.18 ·
820 阅读 ·
7 点赞 ·
3 评论 ·
6 收藏
加载更多