- 博客(14)
- 收藏
- 关注
原创 Docker Desktop - Unexpected WSL error
解决方案主要来自于Docker Github issues。确认docker前端和WSL后端没有问题之后。
2024-02-25 20:06:16
1969
1
原创 NFS Network File System 网络文件系统
NFS通常用于在UNIX和类UNIX操作系统之间共享文件,允许用户在网络上共享和访问文件。NFS的工作方式是,服务器端将文件系统挂载(Mount)到网络上,客户端系统可以通过NFS协议访问这些挂载的文件系统。NFS提供了透明的访问,用户可以像操作本地文件一样操作远程文件。在CentOS 7系统中,需要安装nfs-utils,rpcbind软件包来提供NFS共享服务。手动加载NFS共享服务时,应该先启动rpcbind,再启动NFS。前者用于NFS共享发布和访问,后者用于RPC支持。4. 启动NFS服务。
2024-02-19 15:54:37
862
1
原创 使用Nginx搭建CloudStack本地镜像站
具体来说,这个配置项允许管理员指定一组内部网站的URL地址,这些网站被认为是可信任的,CloudStack可以从这些网站下载虚拟机镜像和其他存储数据。这有助于确保安全存储只能从已知且受信任的来源获取数据,以提高系统的安全性。secstorage.allowd.internel.sites是一个配置选项,用于指定哪些内部网站(Internal Sites)是允许的用于安全存储(Secondary Storage)的。autoindex_exact_size on:这个参数会在目录列表中显示文件的精确大小。
2024-02-13 00:58:01
483
1
原创 重要性采样
估计一个不同分布的期望Ex∼pfx)]∫xpxfxdx∫xqxqxpxfxdxEx∼qqxpxfx将每个实例的权重重新分配为βxqxpx。
2023-12-14 17:45:28
71
1
原创 模型无关控制方法
一些能够被建模成的问题示例电梯,平行泊车,船舶操纵,生物反应器,直升机,飞机物流,机器人行走,围棋对弈模型无关的控制能够解决上述问题。
2023-12-14 17:31:42
101
1
原创 蒙特卡洛价值预测
直接从经验片段进行学习蒙特卡洛是模型无关的:未知马尔可夫决策过程的状态转移/奖励蒙特卡洛从完整的片段中进行学习:没有使用bootstrapping的方法蒙特卡洛采用最简单的思想:值(value)= 平均累计奖励(mean return)只能将蒙特卡洛方法应用于可分片段的马尔可夫决策过程中即,所有的片段都有终止状态。
2023-12-14 09:49:08
96
1
原创 蒙特卡洛方法
在现实问题中,通常没有明确地给出状态转移Psas′和奖励函数R例如,我们仅能观察到部分片段(episodes)s01a01Rs01s11a11Rs11s21a21Rs21s31⋯sT1s02a02Rs02s12a12Rs12s22a22Rs22s3。
2023-12-13 23:05:43
60
1
原创 基于模型的强化学习
MDP由一个五元组构成SAPsaγRSAPsaγR,其中状态转移PPP和奖励函数RRR构成了动态系统动态系统和策略交互的占用度量ρπsaEa∼πss′∼psa∑t0TγtpstsataρπsaEa∼πss′∼psat0∑Tγtpstsata一个白盒环境给定的情况下,可用动态规划的方法求解最优策略(值迭代和策略迭代)如果环境是黑盒。
2023-12-13 22:49:40
145
1
原创 基于动态规划的强化学习
ERs0γRs1γ2Rs2⋯γ∈01是未来奖励的折扣因子,使得和未来奖励相比起来智能体更重视即时奖励以金融为例,今天的$1比明天的$1更有价值给定一个特定的策略πsS→A即,在状态s下采取动作aπs给定策略π定义VπsERs0γRs1γ2Rs2⋯∣s0sπ即,π。
2023-12-13 19:56:50
134
1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人