Atcoder 动态规划专项赛解题报告(更新至S题)

偶然发现了 Atcoder 的一场动态规划专项赛,视若珍宝。

这套题可以很好的练习思维。

欢迎大家去洛谷练习,因为有翻译,有题解,当然也推荐 Vjudge。

洛谷题单

原比赛链接

本文写作时间跨度大,码风可能不同,见谅。

A.Frog 1

f i f_i fi 表示跳到 i i i 需要的费用。

这道题显然有两种选项,直接按顺序 DP 即可。
f i = min ⁡ ( f i − 1 + ∣ h i − h i − 1 ∣ , f i − 2 + ∣ h i − h i − 2 ∣ ) f_i=\min(f_{i-1}+|h_i-h_{i-1}|,f_{i-2}+|h_i-h_{i-2}|) fi=min(fi1+hihi1,fi2+hihi2)

#include<bits/stdc++.h>
using namespace std;
long long n,h[100005],f[100005];
int main()
{
    cin>>n;
    for(int i=1;i<=n;i++)
    {
        cin>>h[i];
    }
    memset(f,127,sizeof(f));
    f[1]=0;
    for(int i=2;i<=n;i++)
    {
        f[i]=min(f[i-1]+abs(h[i]-h[i-1]),f[i-2]+abs(h[i]-h[i-2]));
    }
    cout<<f[n]<<endl;
    return 0;
}

B.Frog 2

f i f_i fi 表示跳到 i i i 需要的费用。

这道题一次可以跳 k k k 格了,但是也是纸老虎,再加一层循环即可。
f i = min ⁡ j = min ⁡ ( i − k , 1 ) i − 1 ( f j + ∣ h i − h j ∣ ) ; f_i=\min_{j=\min(i-k,1)}^{i-1}(f_{j}+|h_i-h_{j}|); fi=j=min(ik,1)mini1(fj+hihj);

#include<bits/stdc++.h>
using namespace std;
long long n,k,h[100005],f[100005];
int main()
{
    cin>>n>>k;
    for(int i=1;i<=n;i++)
    {
        cin>>h[i];
    }
    memset(f,127,sizeof(f));
    f[1]=0;
    for(int i=2;i<=n;i++)
    {
        for(int j=i-1;j>=1&&j+k>=i;j--)
        {
            f[i]=min(f[i],f[j]+abs(h[i]-h[j]));
        }   
    }
    cout<<f[n]<<endl;
    return 0;
}

C.Vacation

f i , j f_{i,j} fi,j 表示第 i i i 天做活动 j j j 的最大幸福值。

对于每个状态,显然有两种选项,直接按顺序 DP 即可。
f i , j = max ⁡ ( f i − 1 , ( j + 1 )   m o d   3 , f i − 1 , ( j + 2 )   m o d   3 ) + a i , j f_{i,j}=\max(f_{i-1,(j+1)\bmod 3},f_{i-1,(j+2)\bmod3})+a_{i,j} fi,j=max(fi1,(j+1)mod3,fi1,(j+2)mod3)+ai,j
那啥,公式里的一些东西和题目描述的不太一样,相信大家可以看懂。

#include<bits/stdc++.h>
using namespace std;
long long n,a[100005][3],f[100005][3];
int main()
{
    cin>>n;
    for(int i=1;i<=n;i++)
        cin>>a[i][0]>>a[i][1]>>a[i][2];
    for(int i=1;i<=n;i++)
        for(int j=0;j<=2;j++)
            f[i][j]=max(f[i-1][(j+1)%3],f[i-1][(j+2)%3])+a[i][j];
    cout<<max(f[n][0],max(f[n][1],f[n][2]))<<endl;
    return 0;
}

D.Knapsack 1

一眼背包,还是01背包的板子。

f i , j f_{i,j} fi,j 为价值为 选前 i i i 个物品,重量为 j j j 时,价值最大是多少。

f i , j = max ⁡ ( f i − 1 , j − w i + v i , f i − 1 , j ) f_{i,j}=\max(f_{i-1,j-w_i}+v_i,f_{i-1,j}) fi,j=max(fi1,jwi+vi,fi1,j)

答案是从大到小找到的第一个 i i i 使得 f i < W f_i<W fi<W

显然可以压缩成一维,不过要倒着来,避免已经计算的部分影响当前计算。

#include<bits/stdc++.h>
using namespace std;
long long n,t,w,v,f[100005];
int main(){
    cin>>t>>n;
    for(int i=1;i<=t;i++)
    {
        cin>>w>>v;
        for(int j=n;j>=w;j--)
            f[j]=max(f[j],f[j-w]+v);        
    }
    cout<<f[n];
}

E.Knapsack 2

一眼背包,还是01背包的板子,不过略有变化。

受数据影响,我们需要变形。

f i , j f_{i,j} fi,j 为价值为 选前 i i i 个物品,价值为 j j j 时,重量最小是多少。

f i , j = min ⁡ ( f i − 1 , j − v i + w i , f i − 1 , j ) f_{i,j}=\min(f_{i-1,j-v_i}+w_i,f_{i-1,j}) fi,j=min(fi1,jvi+wi,fi1,j)

答案是从大到小找到的第一个 i i i 使得 f i < W f_i<W fi<W

显然可以压缩成一维,不过要倒着来,避免已经计算的部分影响当前计算。

#include<bits/stdc++.h>
using namespace std;
long long n,t,w,v,f[100005];
int main(){
    cin>>t>>n;
    memset(f,127,sizeof(f));
	f[0]=0; 
    for(int i=1;i<=t;i++)
    {
        cin>>w>>v;
        for(int j=100000;j>=v;j--)
            f[j]=min(f[j],f[j-v]+w);        
    }
	for(int j=100000;j>=0;j--)
	{
		if(f[j]<=n)
		{
			cout<<j<<endl;
			return 0;
		}
	} 
}

F.LCS

这道题显然就是最长公共子序列的板题。

f i , j f_{i,j} fi,j 表示 字符串1 的前 i i i 个字符与 字符串2 的前 j j j 个字符的最长公共子序列的长度。

f i , j = { f i − 1 , j − 1 + 1 ( a i = b j ) max ⁡ ( f i − 1 , j , f i , j − 1 ) ( a i ≠ b j ) f_{i,j}= \begin{cases} f_{i-1,j-1}+1(a_i=b_j)\\ \max(f_{i-1,j},f_{i,j-1})(a_i \not= b_j) \end{cases} fi,j={fi1,j1+1(ai=bj)max(fi1,j,fi,j1)(ai=bj)

不过需要记录路径,还是很简单的。

我们记录每个状态有哪个状态转移而来,然后倒推答案。

#include <bits/stdc++.h>
using namespace std;
long long f[3005][3005],s[3005][3005][2],n,m;
char a[3005],b[3005];
void dg(long long x,long long y)
{
	if(x==0&&y==0)return;
	dg(s[x][y][0],s[x][y][1]);
	if(s[x][y][0]==x-1&&s[x][y][1]==y-1)
	{
		cout<<a[x];
	}
}
int main() {
	cin>>(a+1)>>(b+1);
	n=strlen(a+1);
	m=strlen(b+1); 
    for(int i=1;i<=n;i++)
	{
        for(int j=1;j<=m;j++)
		{
            if(a[i]==b[j])
			{
                f[i][j]=f[i-1][j-1]+1;
                s[i][j][0]=i-1,s[i][j][1]=j-1;
            } 
			else 
			{
                if(f[i][j-1]>f[i-1][j])
				{
                    f[i][j]=f[i][j-1];
                    s[i][j][0]=i,s[i][j][1]=j-1;
                }
				else 
				{
                    f[i][j]=f[i-1][j];
                    s[i][j][0]=i-1,s[i][j][1]=j;
                }
            }
        }
    }
    dg(n,m);
}

G.Longest Path

f i f_i fi 表示从点 i i i 开始走,能走的最远距离。

f i = max ⁡ ( 0 , max ⁡ ( i , j ) ∈ E ( f j + 1 ) ) f_i=\max(0,\max_{(i,j)\in E}(f_j+1)) fi=max(0,(i,j)Emax(fj+1))

那正常来说,我们要找出度为零的点,然后倒退求解,整体使用拓扑排序,有些小麻烦。

如果用记忆化搜索,就方便多了。

#include<bits/stdc++.h>
using namespace std;
long long n,m,x,y,f[100005],ans;
vector<long long>v[100005];
long long dfs(long long x)
{
	if(f[x]==0)
	{
		for(auto i:v[x])
		{
			f[x]=max(dfs(i)+1,f[x]);
		}
	}
	return f[x];
}
int main()
{
	cin>>n>>m;
	for(int i=1;i<=m;i++)
	{
		cin>>x>>y;
		v[x].push_back(y);
	}
	for(int i=1;i<=n;i++)
	{
		ans=max(dfs(i),ans);
	}
	cout<<ans<<endl; 
} 

H.Grid 1

这题像休息的驿站,反而简单一点,赶紧做了去看下一题吧!

f i , j f_{i,j} fi,j 表示从 ( 1 , 1 ) (1,1) (1,1) 走到 ( i , j ) (i,j) (i,j) 的方案数。

f i , j = { 0 ( c i , j = # ) f i − 1 , j + f i , j − 1 ( c i , j = . ) f_{i,j}= \begin{cases} 0(c_{i,j}=\#)\\ f_{i-1,j}+f_{i,j-1}(c_{i,j}=.) \end{cases} fi,j={0(ci,j=#)fi1,j+fi,j1(ci,j=.)

#include<bits/stdc++.h>
using namespace std;
long long n,m,f[1005][1005];
char c[1005][1005];
int main()
{
	cin>>n>>m;
	for(int i=1;i<=n;i++)
	{
		for(int j=1;j<=m;j++)
		{
			cin>>c[i][j];
		} 
	}
	f[1][1]=1; 
	for(int i=1;i<=n;i++)
	{
		for(int j=1;j<=m;j++)
		{
			if(c[i][j]=='#')continue;
			if(i==j&&i==1)continue;
			f[i][j]=f[i-1][j]+f[i][j-1];
			f[i][j]%= 1000000007;
		}
	} 
	cout<<f[n][m]<<endl; 
} 

I.Coin

这是一道概率动态规划,但是比较简单,跟一些比较复杂的期望动态规划比真的太简单了。

f i , j f_{i,j} fi,j 表示前 i i i 个硬币正面 j j j 次的概率。
f i , j = f i − 1 , j − 1 × a i + f i − 1 , j × ( 1 − a i ) f_{i,j}=f_{i-1,j-1}\times a_i+f_{i-1,j}\times (1-a_i) fi,j=fi1,j1×ai+fi1,j×(1ai)

最后将 f n , i ( n 2 + 1 ≤ i ≤ n ) f_{n,i}(\frac{n}{2}+1\leq i\leq n) fn,i(2n+1in) 累加即可。

#include<bits/stdc++.h>
using namespace std;
long long n;
double a[10005],f[3000][3000],ans;
int main()
{
	cin>>n;
	for(int i=1;i<=n;i++)
	{
		cin>>a[i];
	}
	f[0][0]=1;
	for(int i=1;i<=n;i++)
	{
		for(int j=0;j<=i;j++)
		{
			f[i][j]=f[i-1][j-1]*a[i]+f[i-1][j]*(1-a[i]);
		}
	}
	for(int i=(n+1)/2;i<=n;++i){
		ans+=f[n][i];
	}
	printf("%.11lf",ans);
	return 0;
} 

J.Sushi

一道好玩的期望动态规划,只要想到状态,问题就简单了。

f i , j , k f_{i,j,k} fi,j,k 为还有 i i i 个剩1个的盘子,还有 j j j 个剩2个的盘子,还有 k k k 个剩3个的盘子时期望的操作次数。

f i , j , k = n i + j + k + i i + j + k f i − 1 , j , k + j i + j + k f i + 1 , j − 1 , k + k i + j + k f i , j + 1 , k − 1 f_{i,j,k}=\frac{n}{i+j+k}+\frac{i}{i+j+k}f_{i-1,j,k}+\frac{j}{i+j+k}f_{i+1,j-1,k}+\frac{k}{i+j+k}f_{i,j+1,k-1} fi,j,k=i+j+kn+i+j+kifi1,j,k+i+j+kjfi+1,j1,k+i+j+kkfi,j+1,k1

#include<bits/stdc++.h>
using namespace std;
long long n,a,b,c,x;
double f[305][305][305];
int main()
{
	cin>>n;
	for(int i=1;i<=n;i++)
	{
		cin>>x;
		if(x==1)a++;
		if(x==2)b++;
		if(x==3)c++;
	}
	for(int k=0;k<=n;k++)
	{	
		for(int j=0;j<=n;j++)
		{
			for(int i=0;i<=n;i++)
			{
				if(i==0&&j==0&&k==0)continue;
				if(i!=0)f[i][j][k]+=i*1.00000/n*f[i-1][j][k];
				if(j!=0)f[i][j][k]+=j*1.00000/n*f[i+1][j-1][k];
				if(k!=0)f[i][j][k]+=k*1.00000/n*f[i][j+1][k-1];
				f[i][j][k]++; 
				f[i][j][k]/=(i+j+k)*1.00000/n;
			}
		}
	}
	printf("%.10lf",f[a][b][c]);
} 

K.Stones

对于每个状态,枚举可能选择的石头数量,如果有一个方案是可以保证先手必胜的,那就是先手必胜,否则后手必胜。
f i f_i fi表示 i i i个石子时是否是先手必胜。
f i ∣ = f i − a j ( a j ≤ i ) f_i|=f_{i-a_j}(a_j\leq i) fi=fiaj(aji)

#include<bits/stdc++.h> 
using namespace std;
bool f[100005];
long long n,k,a[100005]; 
int main()
{
	cin>>n>>k;
	for(int i=1;i<=n;i++)
	{
		cin>>a[i];
	}
	for(int i=1;i<=k;i++)
	{
		for(int j=1;j<=n&&a[j]<=i;j++)
		{
			f[i]|=!f[i-a[j]];
		}
	}
	if(f[k])
	{
		cout<<"First"<<endl;
	}
	else
	{
		cout<<"Second"<<endl;
	}
} 

L.Deque

跟上面那道很像!列出状态之后,套路就一致了,看看公式应该不难理解。
f i , j f_{i,j} fi,j表示双端队列长度为 i i i,对应到原数组,左边界是 j j j的先后手之差。
f i , j = max ⁡ ( − f i − 1 , j + a j + i − 1 , − f i − 1 , j + 1 + a j ) ; f_{i,j}=\max(-f_{i-1,j}+a_{j+i-1},-f_{i-1,j+1}+a_j); fi,j=max(fi1,j+aj+i1,fi1,j+1+aj);

#include<bits/stdc++.h>
using namespace std; 
long long n,a[3005],sum[3005],f[3005][3005];
int main()
{
	cin>>n;
	for(int i=1;i<=n;i++)
	{
		cin>>a[i];	
		sum[i]=sum[i-1]+a[i];
	}
	for(int i=1;i<=n;i++)
	{
		for(int j=1;j+i-1<=n;j++)
		{
			f[i][j]=max(-f[i-1][j]+a[j+i-1],-f[i-1][j+1]+a[j]);
		}
	}
	cout<<f[n][1]<<endl;
}

M. Candies

这道题是一道典型的前缀和优化DP。
f i , j f_{i,j} fi,j表示前 i i i个人分了 j j j颗糖的方案数,那么容易得到:
f i , j = ∑ k = 0 a i f i − 1 , j − k f_{i,j}=\sum_{k=0}^{a_i}f_{i-1,j-k} fi,j=k=0aifi1,jk
时间复杂度 O ( n k 2 ) O(nk^2) O(nk2),显然时超。
如何优化?注意到和式内式连续的一段区间和,我们可以用前缀和 O ( 1 ) O(1) O(1)求出。
于是本题时间复杂度变为 O ( n k ) O(nk) O(nk)
注意前缀和要提防数组越界,为此,前缀和数组下标全部往前挪一位。

#include<bits/stdc++.h>
using namespace std; 
long long n,k,a[105],f[105][100005],sum[105][100005];
const long long mod=1e9+7;
int main()
{
	cin>>n>>k;
	for(int i=1;i<=n;i++)
	{
		cin>>a[i];	
	}
	f[0][0]=1;
	sum[0][1]=1;
	for(int i=1;i<=k+1;i++)sum[0][i]=1;
	for(int i=1;i<=n;i++)
	{
		for(long long j=0;j<=k;j++)
		{
			f[i][j]+=(sum[i-1][j+1]-sum[i-1][max(0ll,j-a[i])]+mod)%mod;
			f[i][j]%=mod;
			sum[i][j+1]=sum[i][j]+f[i][j];
			sum[i][j+1]%=mod;
		}
	}
	cout<<f[n][k]<<endl;
}

N.Slimes

这不就是石子合并吗?是时候祭出远古黑历史了——This

我们设 f i , j f_{i,j} fi,j 表示区间 [ i , j ] [i,j] [i,j] 合并所得的最小代价,不难想到枚举一个中点 k k k,表示合并区间 [ i , k ] [i,k] [i,k] [ k + 1 , j ] [k+1,j] [k+1,j] 组成的区间 。
f i , j = min ⁡ k = i j − 1 ( f i , k + f k + 1 , j ) + ∑ k = i j a i f_{i,j}=\min_{k=i}^{j-1}(f_{i,k}+f_{k+1,j})+\sum_{k=i}^{j}a_i fi,j=k=iminj1(fi,k+fk+1,j)+k=ijai
前面的最小值表示将石子合并成两堆的最小代价,后面的区间和是本次合并的代价,无论如何,这次操作的代价永远都是它。

后面那个东西可以用前缀和优化。

还可以用四边形不等式优化,不过这里就不赘述了。

#include<bits/stdc++.h>
using namespace std;
long long dp[505][505],sum[505],n,a[505],mn=1E9;

int main()
{
	memset(dp,127,sizeof(dp));
	cin>>n;
	for(int i=1;i<=n;i++)
	{
		cin>>a[i];
		dp[i][i]=0;
	}
	for(int i=1;i<=n;i++)
	{
		sum[i]=sum[i-1]+a[i];
	}
	for(int k=1;k<=n;k++)
	{
		for(int i=1;i<=n;i++)
		{
			int j=i+k-1;
			if(j>n)continue; 
			for(int l=i;l<j;l++)
			{
				dp[i][j]=min(dp[i][j],dp[i][l]+dp[l+1][j]+sum[j]-sum[i-1]);
			}
		} 		
	}
	cout<<dp[1][n]<<endl;
}

O.Matching

这是一道状态压缩 DP。

我们设 f i , j f_{i,j} fi,j 表示左边部分的前 i i i 个点匹配右边集合为 j j j 的点的方案数。

则可得方程:
f i , j = ∑ k ∈ j , a i , k = 1 f i − 1 , j − k f_{i,j}=\sum_{k\in j,a_{i,k}=1} f_{i-1,j-k} fi,j=kj,ai,k=1fi1,jk
也就是我们枚举 i i i 选择的点 k k k ,这种选法的贡献就是前 i − 1 i-1 i1 个点选择右边 j j j 集合除掉 k k k 的点的方案数。

注意到这里出现了集合的概念,显然实现时难以表示,我们可以转换为一个二进制数。

这个二进制数可以看作是一个布尔数组,第 i i i 位表示右边第 i i i 的点是否被选中。

这样集合除去的操作可以用二进制中的异或完成。

但是这样还是会超时,注意到方程中的 i i i 等于 j j j 的二进制中的 1 1 1 的个数,所以直接枚举状态,找出对应的 i i i 即可。

#include<bits/stdc++.h>
#define LL long long
using namespace std;
const LL N=(1<<21); 
const LL mod=1e9+7; 
LL n,a[22][22],f[22][N];
int main()
{
	cin>>n;
	for(int i=1;i<=n;i++)
	{
		for(int j=1;j<=n;j++)
		{
			cin>>a[i][j];
		}
	}
	f[0][0]=1;
	for(int j=1;j<N;j++)
	{
		LL cnt=0;
		for(int i=1;i<=n;i++)cnt+=(j>>(i-1))&1;
		for(int i=1;i<=n;i++)
		{
			if((j>>(i-1))&1==0)continue;
			if(a[cnt][i])
			{
				f[cnt][j]=(f[cnt][j]+f[cnt-1][j^(1<<(i-1))])%mod;
			}
		}
	}
	cout<<f[n][(1<<n)-1];
}

P.Independent Set

这道题显然是树形 DP。

我们设 f i , 0 f_{i,0} fi,0 表示在 i i i 的子树中染色, i i i 为白色的方案数。

我们设 f i , 1 f_{i,1} fi,1 表示在 i i i 的子树中染色, i i i 为黑色的方案数。

考虑到题目给的限制,易得:
f i , 0 = ∏ j ∈ i s o n ( f i , 0 + f i , 1 ) f i , 1 = ∏ j ∈ i s o n f i , 0 f_{i,0}=\prod_{j\in ison}(f_{i,0}+f_{i,1})\\ f_{i,1}=\prod_{j\in ison}f_{i,0}\\ fi,0=jison(fi,0+fi,1)fi,1=jisonfi,0

#include<bits/stdc++.h>
using namespace std;
vector<long long>v[100005];
long long n,x,y,f[100005][2];
const long long mod=1e9+7;
void dfs(long long x,long long fa)
{
	if(f[x][1]&&f[x][0])return;
	f[x][1]=f[x][0]=1;
	for(auto i:v[x])
	{
		if(i==fa)continue;
		dfs(i,x);
		f[x][0]*=f[i][1]+f[i][0];
		f[x][1]*=f[i][0]; 
		f[x][0]%=mod;
		f[x][1]%=mod;
	}
}
int main()
{
	cin>>n;
	for(int i=1;i<=n-1;i++)
	{
		cin>>x>>y;
		v[x].push_back(y);
		v[y].push_back(x); 
	}
	dfs(1,0); 
	cout<<(f[1][0]+f[1][1])%mod<<endl;
}

Q.Flowers

我们设 f i f_i fi 表示以 i i i 为结尾的不下降子序列的最大权值。

得方程:
f i = max ⁡ j < i , h j ≤ h i ( f j ) + a i f_i=\max_{j<i,h_j \leq h_i}(f_j) +a_i fi=j<i,hjhimax(fj)+ai
这个方程显然是个二维偏序问题,我们用一个树状数组维护一个前缀最大值即可。

#include<bits/stdc++.h>
#define LL long long
using namespace std;
const LL N=5e5+5;
LL n,a[N],b[N],t[N],f[N],mx;
LL lowbit(LL x)
{
	return x&-x;
}
LL query(LL x)
{
	LL ans=0;
	while(x)
	{
		ans=max(ans,t[x]);
		x-=lowbit(x);
	}
	return ans;
}
void update(LL x,LL y)
{
	while(x<=n)
	{
		t[x]=max(t[x],y);
		x+=lowbit(x);
	}
}
int main()
{
	scanf("%lld",&n);
	for(int i=1;i<=n;i++)
	{
		scanf("%lld",&a[i]);
	}
	for(int i=1;i<=n;i++)
	{
		scanf("%lld",&b[i]);
	}
	for(int i=1;i<=n;i++)
	{
		f[i]=query(a[i])+b[i];
		update(a[i],f[i]); 
		mx=max(f[i],mx);
	}
	printf("%lld",mx);
}

R.Walk

我们考虑暴力地用 Floyd 来求解方案数,设 f i , j , k f_{i,j,k} fi,j,k 为长度为 k k k i → j i\to j ij 的路径数。

得:
f i , j , k = ∑ 0 < f i , l , k − 1 , 0 < f l , j , k − 1 f i , l , k − 1 × f l , j , k − 1 f_{i,j,k}=\sum_{0<f_{i,l,k-1},0<f_{l,j,k-1}}f_{i,l,k-1}\times f_{l,j,k-1} fi,j,k=0<fi,l,k1,0<fl,j,k1fi,l,k1×fl,j,k1
显然条件可要可不要,因为等于 0 0 0 时贡献也为 0 0 0,也就是:
f i , j , k = ∑ l = 1 n f i , l , k − 1 × f l , j , k − 1 f_{i,j,k}=\sum_{l=1}^nf_{i,l,k-1}\times f_{l,j,k-1} fi,j,k=l=1nfi,l,k1×fl,j,k1
这个式子中, k k k 步的方案都由 k − 1 k-1 k1 步得到,我们考虑滚动数组舍去 k k k
f i , j = ∑ k = 1 n f i , k × f k , j f_{i,j}=\sum_{k=1}^nf_{i,k}\times f_{k,j} fi,j=k=1nfi,k×fk,j
这个式子非常眼熟,这不是矩阵乘法吗?原来我们可以直接来一个矩阵快速幂来求出答案。

我们先处理出邻接矩阵,然后求出其 K K K 次方即可,这就是我们要的 f i , j , k f_{i,j,k} fi,j,k,加起来就是答案。

#include<bits/stdc++.h>
using namespace std;
long long n,k,sum;
const long long mod=1e9+7;
struct Matrix
{
    long long n,m,a[105][105];
    void Input(long long x)
    {
        n=x,m=x;
        for(int i=1;i<=n;i++)
        {
            for(int j=1;j<=m;j++)
            {
                cin>>a[i][j];
            }
        }
    }
} a;      
Matrix operator*(const Matrix &a,const Matrix &b)
{
    Matrix c;
    
    c.n=a.n;
    c.m=b.m;
    for(int i=1;i<=c.n;i++)
    {
        for(int j=1;j<=c.m;j++)
        {
            c.a[i][j]=0;
        }
    }
    for(int i=1;i<=a.n;i++)
    {
        for(int j=1;j<=b.m;j++)
        {
            for(int k=1;k<=a.m;k++)
            {
                c.a[i][j]+=a.a[i][k]*b.a[k][j];
                c.a[i][j]%=mod;
            }
        }
    }
    return c;
}
Matrix ksm(Matrix x,long long y)
{
    Matrix ans=x;
    y--;
    while(y)
    {
        if(y&1)
        {
            ans=ans*x;
        }
        x=x*x;
        y>>=1;
    }
    return ans;
}
int main()
{
    cin>>n>>k;
    a.Input(n);
    a=ksm(a,k);
    for(int i=1;i<=a.n;i++)
    {
    	for(int j=1;j<=a.m;j++)
    	{
    		sum+=a.a[i][j];
    		sum%=mod;
		}
	}
	cout<<sum<<endl;
}

S.Digit Sum

数位 DP 基础题。

我们设 f i , j , 0 f_{i,j,0} fi,j,0 表示在数字 K K K 从左往右第 i i i 位往后,余数为 j j j ,不需要考虑小于 K K K 这一条件的方案数。

我们设 f i , j , 1 f_{i,j,1} fi,j,1 表示在数字 K K K 从左往右第 i i i 位往后,余数为 j j j ,前面与 K K K 都一样,需要考虑小于 K K K 这一条件的方案数。

两个的不同在于选择的范围不同,没有限制则可以选择 [ 0 , 9 ] [0,9] [0,9] 的所有数字,有限制则不能超过 K K K

我们设 K K K 从左往右第 i i i 位为 K i K_i Ki

得:
f i , j , 0 = ∑ k = 0 9 f i + 1 , j − k , 0 f i , j , 1 = ∑ k = 0 K i − 1 ( f i + 1 , j − k , 0 ) + f i + 1 , j − K i , 1 f_{i,j,0}=\sum_{k=0}^9f_{i+1,j-k,0}\\ f_{i,j,1}=\sum_{k=0}^{K_i-1}(f_{i+1,j-k,0})+f_{i+1,j-K_i,1} fi,j,0=k=09fi+1,jk,0fi,j,1=k=0Ki1(fi+1,jk,0)+fi+1,jKi,1
注意 j − k j-k jk 其实是要取模的,但我没写。

#include<bits/stdc++.h>
#define LL long long
using namespace std;
const LL mod=1e9+7;
char c[10005];
LL n,k,f[10005][105][2];
int main()
{
	cin>>(c+1)>>k;
	n=strlen(c+1);
	f[n+1][0][0]=f[n+1][0][1]=1;
	for(int i=n;i>=1;i--)
	{
		for(int j=0;j<=k-1;j++)
		{
			for(int l=0;l<=9;l++)
			{
				LL t=((j-l)%k+k)%k; 
				f[i][j][0]=(f[i][j][0]+f[i+1][t][0])%mod;
				if(l<c[i]-'0')f[i][j][1]=(f[i][j][1]+f[i+1][t][0])%mod;
				if(c[i]-'0'==l)f[i][j][1]=(f[i][j][1]+f[i+1][t][1])%mod;
			}
		}
	}
	cout<<(f[1][0][1]-1+mod)%mod<<endl;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
多维动态规划(MDP)是一种在多维状态空间中求解最优策略的算法。下面是解题思路的一般步骤: 1. 定义状态和动作:首先,需要明确问的状态和可选的动作。将问抽象成一个多维状态空间,并确定每个状态下可执行的动作。 2. 定义价值函数:为了评估每个状态的优劣,需要定义一个价值函数来衡量状态的价值。价值函数可以是累积奖励、期望回报等。 3. 定义转移函数:转移函数描述了状态之间的转换关系,即在执行某个动作后,当前状态如何转移到下一个状态。转移函数可以是确定性的或概率性的。 4. 构建动态规划表格:根据问的状态空间和动作空间,构建一个多维表格。每个单元格代表一个状态,并记录该状态下执行不同动作所得到的价值。 5. 递归求解最优策略:从最后一个状态开始,根据动态规划的原理递归地计算每个状态的最优价值,并记录最优动作。通过向前逐步计算,可以得到整个状态空间下的最优策略。 6. 优化算法:对于复杂问,可以采用一些优化技巧来减少计算量,如值迭代、策略迭代等。 需要注意的是,多维动态规划算法的实现可能会比较复杂,涉及到状态空间的遍历和动作选择等问。因此,了解问的特点和算法的原理非常重要。 希望这个解题思路能对你有所帮助!如果还有其他问,请继续提问。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值