Python:Wilcoxon signed-rank test

这篇博客介绍了如何使用Python实现Wilcoxon符号秩检验,引用了Frank Wilcoxon在1945年的论文,并提供了相关的bib文件链接。Python实现结果显示了统计量和p值。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

参考论文网址:

 https://www.jstor.org/stable/3001968?origin=crossref&seq=1#metadata_info_tab_contents

CHICAGO:

Wilcoxon, Frank. “Individual Comparisons by Ranking Methods.” Biometrics Bulletin 1, no. 6 (1945): 80–83. https://doi.org/10.2307/3001968.

bib文件:

@article{Wilcoxon,

  author    = {Wilcoxon F.},

  title     = {Individual comparisons by ranking methods},

  journal   = {Biometrics Bulletin},

  volume    = {1},

  number    = {6},

  pages     = {80--83},

  year      = {1945}

}

Fast kernel extreme learning machine for ordinal regression

威尔科克森符号秩检验(Wilcoxon signed-rank test)是一种非参数统计方法,用于比较两个相关样本的中位数是否存在显著差异。在Python中,你可以使用`scipy.stats`模块中的`wilcoxon()`函数来进行这种检验。 **使用方法步骤如下:** 1. 首先,确保已经安装了`scipy`库。如果没有安装,可以通过`pip install scipy`进行安装。 ```python import scipy.stats as stats ``` 2. 准备两个相关的数值列表或数组,分别代表你要比较的两组数据。例如,`group1`和`group2`。 ```python group1 = [1, 2, 3, 4, 5] group2 = [6, 7, 8, 9, 10] # 这里假设这两组数据是对立的,比如实验结果或观测值 ``` 3. 使用`wilcoxon()`函数计算符号秩并进行检验。函数返回一个元组,包含两个值:第一个是检验的秩和(rank sum),第二个是零假设下对应的P值。 ```python test_result = stats.wilcoxon(group1, group2) rank_sum, p_value = test_result ``` `p_value`小于预设的显著性水平(通常0.05)时,我们可以拒绝零假设,认为两组数据存在显著差异。 4. 可以根据`p_value`判断是否接受原假设,通常是用`if p_value < alpha`的形式,其中`alpha`是你选择的显著性水平(如0.05)。 ```python alpha = 0.05 if p_value < alpha: print("两组数据有显著差异(右侧检验)") else: print("无法拒绝零假设,数据之间没有显著差异") ``` **相关问题--:** 1. 威尔科克森检验适用于哪种类型的对比? 2. 如何决定在统计上是否拒绝原假设? 3. `wilcoxon()`函数返回的秩和和P值有何意义? 4. 怎样处理未对齐的数据或缺失值?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

DeniuHe

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值