论文学习Multi-Criteria Active Deep Learning for Image Classification - KBS-2019

创新点1:Informativeness Measure Under labeled Samples


(1)作者通过密度度量无标记样本的富信息性:

\huge Inf^{Den}(x_i|D_L)=1-\frac{1}{|D^s_L|}\sum_{xj \in D^s_L} cosdis(x_i,x_j)

我咋看不出这个指标跟密度有关呢?但我能看出来这个指标跟diversity有关。是diversity的反方向,因为加了一个符号。

也就是说这个指标越大,新选的样本与已标记样本挨得越近。

(2)作者给出了相似性指标来表征富信息性:

按照常理,新样本应该与已标记样本越不相似约好。但文章给出的公式是:

\huge Inf^{simi}(x_i|D_L)=1-max_{x_j \in D^s_L} Cosdis(x_i,x_j)

1减去到最远已标记样本的距离。这是如何做到关键无标记样本与其他已标记样本不相似的呢?不得而知啊。

它不控制与最近已标记样本的距离,反而考量与最远已标记样本之间的距离。No sense! without reason!

 

作为一个正常人,我表示看不懂,造化不够深!

 

 

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

DeniuHe

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值