"""
注意:注意:一定要使用训练集索引
"""
import os
import xlwt
import xlrd
import numpy as np
import pandas as pd
from pathlib import Path
from copy import deepcopy
from sklearn.preprocessing import StandardScaler
from time import time
from sklearn.impute import KNNImputer
from sklearn.metrics.pairwise import pairwise_distances
from numpy.linalg import inv
from sklearn.metrics import accuracy_score, mean_absolute_error, f1_score, mutual_info_score
from sklearn.neighbors import NearestNeighbors
from mord import LogisticAT
np.seterr(divide='ignore',invalid='ignore')
def _svd_threshold(svd_obj, lambdadL):
svd_obj = np.asarray(svd_obj)
eig_obj = svd_obj.T.dot(svd_obj)
eig_obj2 = eig_obj
eig_tag = 0
eig_obj_timer = 1e20
while (eig_tag == 0) and (eig_obj_timer >= 1e8):
try:
D, V = np.linalg.eig(eig_obj2)
sorted_args = np.argsort(D)
V = V[:, sorted_args]
D = D[sorted_args]
eig_tag = 1
except:
eig_tag = 0
eig_obj2 = round(eig_obj * eig_obj_timer) / eig_obj_timer
eig_obj_timer = eig_obj_timer / 10
# D = np.diag(D)
D[D < 0] = 0
D = np.sqrt(D)
D2 = copy.copy(D)
D2[D2 != 0] = 1.0 / D2[D2 != 0]
D = np.diag(np.fmax(np.zeros(D.shape), D - lambdadL))
Zk = svd_obj.dot((V.dot(np.diag(D2))).dot(D.dot(V.T)))
traceNorm = np.sum(np.diag(D))
return Zk, traceNorm
# --------------------------------------------------------------------------------------
def sigmoid(t):
# sigmoid function, 1 / (1 + exp(-t))
# stable computation
idx = t > 0
out = np.zeros_like(t)
out[idx] = 1. / (1 + np.exp(-t[idx]))
exp_t = np.exp(t[~idx])
out[~idx] = exp_t / (1. + exp_t)
return out
def log_loss(Z):
# stable computation of the logistic loss
idx = Z > 0
out = np.zeros_like(Z)
out[idx] = np.log(1 + np.exp(-Z[idx]))
out[~idx] = (-Z[~idx] + np.log(1 + np.exp(Z[~idx])))
return out
def GLoss(X,Theta,w,S):
Xw = X.dot(w)
Alpha = Theta[:, None] - Xw
Sigma = S * sigmoid(-S * Alpha)
Sigma = Sigma.sum(0)
gloss = Sigma.reshape(-1,1) @ w.reshape(1,-1)
return gloss
def Loss(X, Theta, w, S):
return np.sum(log_loss(S * (Theta[:, None] - X.dot(w))))
def MAY_mask_mc(X, y, mask, **kwargs):
X = np.asarray(X)
y = np.asarray(y).astype(int)
n_Class = len(np.unique(y))
# M = np.array([[(i - j)**2 for i in range(n_Class)] for j in range(n_Class)])
# T_lab = M[y,:]
n_samples, n_features = X.shape
max_in_iter = kwargs.pop('max_in_iter', 100)
max_out_iter = kwargs.pop('max_out_iter', 10)
lambda1 = kwargs.pop('lambda1', 1)
lambda2 = kwargs.pop('lambda2', 1/(n_Class-1))
# lambda2 = kwargs.pop('lambda2', 1)
check_para = kwargs.pop('check_para', True)
obrT = mask
if check_para:
obrT = np.asarray(mask)
assert obrT.shape[0] == X.shape[0] and obrT.shape[1] == X.shape[1]
ue = np.unique(obrT)
assert len(ue) == 2
assert 0 in ue
assert 1 in ue
X_obr = np.zeros((n_samples, n_features))
X_obr += obrT * X
n_samples, n_features = X.shape
lambda2 /= n_samples
theta0 = 1
theta1 = 1
Z0 = np.zeros((n_samples, n_features))
Z1 = np.zeros((n_samples, n_features))
ineqLtemp0 = np.zeros((n_samples, n_features))
ineqLtemp1 = ineqLtemp0
L = 2
converge_out = np.zeros((max_in_iter, 1))
X_mc = X_obr
for i in range(max_out_iter):
model = LogisticAT()
model.fit(X=X_mc, y=y)
w = model.coef_
Theta = model.theta_
# print("Theta::",Theta)
S = np.sign(np.arange(n_Class - 1)[:, None] - y + 0.5)
convergence = np.zeros(max_in_iter)
for k in range(max_in_iter):
Y = Z1 + theta1 * (1 / theta0 - 1) * (Z1 - Z0)
svd_obj_temp_temp = (theta1 * (1 / theta0 - 1) + 1) * ineqLtemp1 - theta1 * (
1 / theta0 - 1) * ineqLtemp0 - X_obr
# TODO W 1
svd_obj_temp = svd_obj_temp_temp + 2 * lambda2 * GLoss(X=Y,Theta=Theta,w=w,S=S)
svd_obj = Y - 1 / L * svd_obj_temp
Z0 = copy.copy(Z1)
Z1, traceNorm = _svd_threshold(svd_obj, lambda1 / L)
ineqLtemp0 = ineqLtemp1
# do not know whether it is element wise or not
ineqLtemp1 = Z1 * obrT
# TODO W 2
ineqL = np.linalg.norm(ineqLtemp1 - X_obr, ord='fro') ** 2 / 2 + Loss(X=Z1,Theta=Theta, w=w, S=S) * lambda2
# TODO W 3
ineqRtemp = sum(sum(svd_obj_temp_temp ** 2)) / 2 + Loss(X=Z1,Theta=Theta, w=w, S=S) * lambda2 - svd_obj_temp.flatten().dot(Y.flatten())
ineqR = ineqRtemp + svd_obj_temp.flatten().dot(Z1.flatten()) + L / 2 * sum(sum((Z1 - Y) ** 2))
while ineqL > ineqR:
L = L * 2
svd_obj = Y - 1 / L * svd_obj_temp
Z1, traceNorm = _svd_threshold(svd_obj, lambda1 / L)
ineqLtemp1 = Z1 * obrT
# TODO W 4
ineqL = np.linalg.norm(ineqLtemp1 - X_obr, ord='fro') ** 2 / 2 + Loss(X=Z1,Theta=Theta, w=w, S=S) * lambda2
ineqR = ineqRtemp + svd_obj_temp.flatten().dot(Z1.flatten()) + L / 2 * sum(sum((Z1 - Y) ** 2))
theta0 = theta1
theta1 = (np.sqrt(theta1 ** 4 + 4 * theta1 ** 2) - theta1 ** 2) / 2
convergence[k] = ineqL + lambda1 * traceNorm
# judge convergence
if k == 0:
minObj = convergence[k]
X_mc = Z1
else:
if convergence[k] < minObj:
minObj = convergence[k]
X_mc = Z1
if k > 0:
if np.abs(convergence[k] - convergence[k - 1]) < ((1e-6) * convergence[k - 1]):
break
converge_out[i] = minObj
if i == 0:
minObj_out = converge_out[k]
Xmc = X_mc
# print("Xmc_1 ====&
Python:OIICkNNI
本文将深入探讨Python中K近邻(K-Nearest Neighbors, KNN)算法的实现与应用,包括数据预处理、模型训练和预测,以及在实际案例中的效果分析。"
50770256,5616460,寻找第一个坏版本:LeetCode 004 First Bad Version,"['算法', '编程题', 'LeetCode', '二分搜索']
摘要由CSDN通过智能技术生成