- 马上要实习面试了,总结和分析一下算法与数据结构。
快速排序是指通过一趟排序将要排序的数据分割成独立的两部分,其中一部分的所有数据都比另外一部分的所有数据都要小,然后再按此方法对这两部分数据分别进行快速排序,整个排序过程可以递归进行,以此达到整个数据变成有序序列。
最好的情况:
每次划分所选择的中间数恰好将当前序列几乎等分,经过log2n趟划分,便可得到长度为1的子表。这样,整个算法的时间复杂度为O(nlog2n)。
最坏的情况:
每次所选的中间数是当前序列中的最大或最小元素,这使得每次划分所得的子表中一个为空表,另一子表的长度为原表的长度-1。这样,长度为n的数据表的快速排序需要经过n趟划分,使得整个排序算法的时间复杂度为O(n²)。
public static void QuickSort(int[]arr,int left, int right){
if(left<right){
int partition = partition(arr,left,right);
QuickSort(arr,left,partition-1);
QuickSort(arr,partition+1,right);
}
}
public void QuickSortStack(int[]arr,int left,int right){
int pivot = partition(arr,left,right);
Deque<Integer> stack = new LinkedList<Integer>();
if(left<pivot-1){
stack.push(left);
stack.push(pivot-1);
}
if(right>pivot+1){
stack.push(pivot+1);
stack.push(right);
}
while(!stack.isEmpty()){
int r = stack.pop();
int l = stack.pop();
pivot = partition(arr,l,r);
if(l<pivot-1){
stack.push(l);
stack.push(pivot-1);
}
if(r>pivot+1){
stack.push(pivot+1);
stack.push(r);
}
}
}
public static int partition(int[]arr,int left,int right){
int l = left;
int r = right;
int pivot = arr[l];
while(l<r){
while(arr[r]>=pivot && l<r) r--;
arr[l] = arr[r];
while(arr[l]<=pivot && l<r) l++;
arr[r] = arr[l];
}
arr[l] = pivot;
return l;
}