算法与数据结构_动态规划_打家劫舍

本文详细介绍了LeetCode上的一道经典动态规划问题,即如何在不触发防盗系统的情况下,一夜之间盗取最高金额。通过分析状态转移方程,我们可以得出解决方案:dp[i]取决于是否盗窃第i个房子。当不偷第i个房子时,dp[i]=dp[i-1];偷第i个房子时,dp[i]=dp[i-2]+nums[i]。最终返回dp[length-1]作为最大盗窃金额。
摘要由CSDN通过智能技术生成

leetcode上一道算是很经典的动态规划题,在这里总结一下。
原题:
你是一个专业的小偷,计划偷窃沿街的房屋。每间房内都藏有一定的现金,影响你偷窃的唯一制约因素就是相邻的房屋装有相互连通的防盗系统,如果两间相邻的房屋在同一晚上被小偷闯入,系统会自动报警。
给定一个代表每个房屋存放金额的非负整数数组,计算你 不触动警报装置的情况下 ,一夜之内能够偷窃到的最高金额。
动态规划的关键是要考虑到状态变化方程:因为两间相邻的房屋不能在同一晚上被小偷闯入,那么dp[ i ]就有两种情况,偷还是不偷第 i 个房间:(1) dp[ i ] = dp[ i -2]+nums[ i ] 即之前i-2的状态再加上偷现在的房屋。 (2) 不偷第i个房屋 dp[ i ] = dp[ i -1]

public int rob(int[]nums){
	int length =nums.length;
	// 因为状态方程的成立,length必须大于2,所以先进行特判
	if(length == 0) return nums[0];
	if(length == 1) return Math.max(nums[0],nums[1]);
	// 状态数组
	int[]dp = new int[length];
	dp[0] =re[0];
	dp[1] =Math.max(nums[0],nums[1]);
	for(int i = 2;i<length;i++){
		//运用状态方程
		dp[i] = Math.max(dp[i-1],dp[i-2]+nums[i]);
	}
	return dp[length-1];
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值