leetcode上一道算是很经典的动态规划题,在这里总结一下。
原题:
你是一个专业的小偷,计划偷窃沿街的房屋。每间房内都藏有一定的现金,影响你偷窃的唯一制约因素就是相邻的房屋装有相互连通的防盗系统,如果两间相邻的房屋在同一晚上被小偷闯入,系统会自动报警。
给定一个代表每个房屋存放金额的非负整数数组,计算你 不触动警报装置的情况下 ,一夜之内能够偷窃到的最高金额。
动态规划的关键是要考虑到状态变化方程:因为两间相邻的房屋不能在同一晚上被小偷闯入,那么dp[ i ]就有两种情况,偷还是不偷第 i 个房间:(1) dp[ i ] = dp[ i -2]+nums[ i ] 即之前i-2的状态再加上偷现在的房屋。 (2) 不偷第i个房屋 dp[ i ] = dp[ i -1]
public int rob(int[]nums){
int length =nums.length;
// 因为状态方程的成立,length必须大于2,所以先进行特判
if(length == 0) return nums[0];
if(length == 1) return Math.max(nums[0],nums[1]);
// 状态数组
int[]dp = new int[length];
dp[0] =re[0];
dp[1] =Math.max(nums[0],nums[1]);
for(int i = 2;i<length;i++){
//运用状态方程
dp[i] = Math.max(dp[i-1],dp[i-2]+nums[i]);
}
return dp[length-1];
}