- 博客(1)
- 收藏
- 关注
原创 网络空间安全数学基础部分证明,筛法、贝祖等式的编程实现。
证明:如果a是整数,a3-a被3整除 证:令a=3k,则3|3(3k-1)(3k+1) 令a=3k+1,则3|3(3k+1)(3k+2) 令a=3k+2,则3|(3k+1)(3k+2) (3k+3)=3(k+1) (3k+1)(3k+2), 得证。 证明:任意连续三个整数的乘积都被6整除 证:结合上题, 令a=6k,则6|6(6k-1)(6k+1) 令a=6k+1,则6|6(6k+1)(6k+2) 令a=6k+2,则6|(6k+1)(6k+2) (6k+3)=6(6k+1) (3k+1)(2k
2020-10-21 13:05:28 4072 7
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人