题目要求:一个人爬楼梯,每次可以走一级或者两级,输入楼梯级数,求不同的走法数。
输入输出格式:输入包含若干行,每行包含一个正整数N(N<=30)代表楼梯级数,输出对应的走法数,每个一行。
样例输入:
5
8
10
样例输出:
8
34
89
分析:用递归将问题分解为规模更小的子问题进行求解。
n级台阶的走法数=第一步走1级后,剩下的n-1级台阶的走法数+第一步走2级后,剩下的n-2级台阶的走法数。即f(n)=f(n+1)+f(n+2)
边界条件:n=1时,为1 n=2时,为2(注意不能只写n=1时,为1,因为f(2)=f(1)+f(0),我们不知道f(0).因此f(2)是不能用递归来求的,而是应该作为边界条件,直接return它的值。当然边界条件也可以写为:n=0时,为1 n=1时,为1,即只有f(1)的值是直接return的,其他都是递归得到的)
#include<iostream>
using namespace std;
int stair(int n)
{
if(n==1)
return 1;
if(n==2)
return 2;
return stair(n-1)+stair(n-2);
}
int main()
{
int N;
while(cin>>N)
{
cout<<stair(N)<<endl;
}
return 0;
}