关押罪犯 洛谷1525 并查集

本文探讨了一个关于罪犯分配的问题,通过合理的分配减少监狱内的冲突事件影响力。利用数据结构进行冲突值排序及处理,确保冲突事件的影响力降至最低。

题目大意

S 城现有两座监狱,一共关押着N 名罪犯,编号分别为1~N。他们之间的关系自然也极不和谐。很多罪犯之间甚至积怨已久,如果客观条件具备则随时可能爆发冲突。我们用“怨气值”(一个正整数值)来表示某两名罪犯之间的仇恨程度,怨气值越大,则这两名罪犯之间的积怨越多。如果两名怨气值为c 的罪犯被关押在同一监狱,他们俩之间会发生摩擦,并造成影响力为c 的冲突事件。

每年年末,警察局会将本年内监狱中的所有冲突事件按影响力从大到小排成一个列表,然后上报到S 城Z 市长那里。公务繁忙的Z 市长只会去看列表中的第一个事件的影响力,如果影响很坏,他就会考虑撤换警察局长。

在详细考察了N 名罪犯间的矛盾关系后,警察局长觉得压力巨大。他准备将罪犯们在两座监狱内重新分配,以求产生的冲突事件影响力都较小,从而保住自己的乌纱帽。假设只要处于同一监狱内的某两个罪犯间有仇恨,那么他们一定会在每年的某个时候发生摩擦。

那么,应如何分配罪犯,才能使Z 市长看到的那个冲突事件的影响力最小?这个最小值是多少?

 

分析

首先可按照冲突值从大到小排序来进行处理,先解决冲突值最大的纠纷,将两个罪犯放到不同的监狱,将放在同一个监狱的罪犯并到同一颗树上,同时用一个数组存储罪犯的敌人,再次遇到敌人时候可将这两个敌人并到一棵树上,若当前两个罪犯已经在同一颗树上,则该冲突值就是最大冲突值。

 

code 

 

#include <bits/stdc++.h>
typedef long long ll;
using namespace std;
const int maxn=1e5+3;
struct node
{
    ll u;
    ll v;
    ll w;
}A[maxn];
ll emp[20003];
ll pre[20003];
ll find(ll x)
{
    if(x!=pre[x])
        pre[x]=find(pre[x]);
    return pre[x];
}
void joint(ll x,ll y)
{
    ll fx=find(x),fy=find(y);
    if(fx!=fy)
        pre[fx]=fy;
}



ll cmp(node x,node y)
{
    return x.w>y.w;
}

int main()
{
    ll n,m;
    cin>>n>>m;
    for(int i=1;i<=m;i++)
    {
        cin>>A[i].u>>A[i].v>>A[i].w;
    }
    sort(A+1,A+m+1,cmp);
    for(int i=1;i<=20005;i++)
        pre[i]=i;
    for(int i=1;i<=m;i++)
    {
       ll p=A[i].u;
       ll q=A[i].v;
        if(find(p)==find(q))
        {
            printf("%lld\n",A[i].w);
            return 0;
        }

        if(!emp[p]&&!emp[q])
        {
            emp[p]=q;
            emp[q]=p;
        }
        else if(emp[p]&&!emp[q])
        {
            joint(emp[p],q);
            emp[q]=p;
        }
        else if(!emp[p]&&emp[q])
        {
            joint(p,emp[q]);
            emp[p]=q;
        }
        else if(emp[p]&&emp[q])
        {
            joint(emp[p],q);
            joint(emp[q],p);
        }
    }
    printf("0\n");
    return 0;
}

 

 

### 使用带权并查集解决关押罪犯问题 为了有效处理罪犯之间的矛盾关系并将这些罪犯合理分配到两所不同的监狱中,可以采用带权并查集来解决问题[^2]。 #### 带权并查集简介 带权并查集是一种扩展版本的并查集数据结构,在普通的查找和合并操作基础上增加了权重管理功能。对于本题而言,权重用于表示当前节点与其父节点所在集合的关系(即同属一个监狱还是不同监狱)。具体来说: - 如果两个节点属于同一个监狱,则它们之间路径上的所有边权重之积应为正数; - 若两者位于不同监狱,则该乘积应当是负数; 这种特性使得可以通过简单的判断快速得知任意两名罪犯是否能被安置在同一所监狱里而不会引发冲突。 #### 解决方案描述 针对题目中的需求——尽可能减少因仇恨而导致的摩擦次数,采取如下策略: 1. 预先读取输入数据,构建初始状态下的并查集实例; 2. 对每一对存在敌意的罪犯组合按照其对应的愤怒值降序排列; 3. 尝试依次处理上述列表里的每一项记录: - 利用`find()`函数定位双方所属根结点及其相对位置信息; - 当发现二者已经处在相同连通分支下时停止进一步尝试,并返回此时的最大未处理愤怒值作为最终结果; 4. 成功完成全部配对后输出0表明不存在无法调和的情况; 通过这种方式可以在O(nlogn)复杂度内高效地找到最优解法[^3]。 ```python class UnionFindWithWeight: def __init__(self, n): self.parent = list(range(n)) self.weight = [1] * n def find(self, x): if self.parent[x] != x: root = self.find(self.parent[x]) self.weight[x] *= self.weight[self.parent[x]] self.parent[x] = root return self.parent[x] def union(self, x, y, w): rx, ry = map(self.find, (x, y)) if rx == ry: return abs(self.weight[x]*w*self.weight[y]) == 1 self.parent[rx] = ry self.weight[rx] = self.weight[y] * w * self.weight[x] def solve_prisoner_conflict(N, M, conflicts): uf = UnionFindWithWeight(N+1) # Sort by weight in descending order. sorted_conflicts = sorted(conflicts, key=lambda item:item[-1], reverse=True) for u,v,w in sorted_conflicts: if not uf.union(u, v, -1): return w return 0 ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值