OpenCV轮廓内接矩形计算与绘制

189 篇文章 ¥59.90 ¥99.00
本文介绍了如何使用OpenCV进行轮廓识别,求取物体轮廓的最大内接矩形,以及如何在图像上绘制该矩形。通过图像预处理、轮廓检测和cv2.minAreaRect()函数,实现最小外接矩形到内接矩形的转换,适用于目标跟踪和物体检测等场景。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

OpenCV轮廓内接矩形计算与绘制

OpenCV是一款常用于计算机视觉和机器学习的开源库,它提供了丰富的图像处理函数和工具。其中一个常用的功能是轮廓识别(Contour Detection),通过对图像进行边缘检测和二值化处理,可以获得物体的轮廓信息。在很多实际应用中,需要求取物体轮廓的最大内接矩形(Minimum Enclosing Rectangle),该技术在目标跟踪、物体检测等领域有广泛应用。本文将介绍如何使用OpenCV实现轮廓最大内接矩形的计算与绘制。

  1. 图像预处理

在处理之前,需要读入一张待处理的图像,其路径为path。我们首先对图像进行预处理,包括灰度化、二值化和边缘检测。这一步可以使用OpenCV提供的函数实现:

import cv2
import numpy as np

# 读入图片并灰度化
img = cv2.imread
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值