生存分析:使用survival包进行lung数据集的分析(R语言)

95 篇文章 ¥59.90 ¥99.00
本文利用R语言的survival包对lung数据集进行生存分析,探讨影响肺癌患者生存时间的因素。通过Kaplan-Meier曲线分析整体生存状况,借助Cox比例风险模型和log-rank检验评估性别、年龄、癌症阶段等变量的统计显著性影响。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

生存分析:使用survival包进行lung数据集的分析(R语言)

生存分析是一种用于研究事件发生时间的统计方法,它可以帮助我们了解不同因素对事件发生的影响。在这篇文章中,我们将使用R语言中的survival包对lung数据集进行生存分析,并探索与肺癌患者生存时间相关的因素。

首先,我们需要加载所需的R包并导入lung数据集。

# 加载所需的包
library(survival)

# 导入lung数据集
data(lung)

接下来,我们可以查看数据集的结构和前几行数据,以便对数据有一个初步的了解。

# 查看数据集结构
str(lung)

# 查看前几行数据
head(lung)

lung数据集包含了来自临床试验的肺癌患者的信息,其中包括生存时间、事件发生状态(是否死亡)、年龄、性别、癌症阶段等变量。

在进行生存分析之前,我们首先需要定义生存时间和事件发生状态的变量。

# 定义生存时间和事件发生状态的变量
time <- lung$time
status <- lung$status

在进行实际的生存分析之前,我们可以使用Kaplan-Meier曲线绘制整体生存曲线

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值