基于Matlab的交通标志检测分割算法实现

164 篇文章 ¥59.90 ¥99.00
本文介绍了一种基于Matlab的交通标志检测分割算法,通过HSV色彩空间转换、直方图均衡化、二值化、形态学操作、区域属性筛选、边缘检测、霍夫变换和小波滤波等步骤,实现对交通标志的高效准确检测。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

基于Matlab的交通标志检测分割算法实现

近年来,随着智能化交通系统的不断推广,交通标志在道路上的作用越来越重要。如何高效、准确地检测并分割交通标志成为了一个研究热点。本文将介绍一种基于Matlab的交通标志检测与分割算法,主要采用了形态学处理、膨胀、腐蚀、形状检测、颜色模型和小波滤波等知识的综合应用。

算法流程

  1. 读入原始图像
  2. 将彩色图像转换为HSV空间
  3. 对H通道做直方图均衡化增强对比度
  4. 根据交通标志的典型颜色范围设置阈值,二值化图像
  5. 进行形态学膨胀和腐蚀操作,消除噪声并增强标志的形状特征
  6. 利用regionprops函数获取连通区域的面积、周长信息,并根据先验知识筛选符合条件的标志区域
  7. 对符合条件的标志区域做边缘检测、霍夫变换检测圆形标志
  8. 进行小波滤波,将噪声进一步去除
  9. 输出检测结果

Matlab代码实现

% 读入原始图像
I = imread(‘traffic_sign.jpg’);

% 将彩色图像转换为HSV空间
J = rgb2hsv(I);

% 对H通道做直方图均衡化增强对比度
H = J(:,:,1);
H = histeq(H);
J(:,:,1) = H;

% 根据交通标志的典型颜色范围设置阈值,二值化图像
BW = (J(:,:,1)>0.08

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值