基于Matlab的交通标志检测分割算法实现
近年来,随着智能化交通系统的不断推广,交通标志在道路上的作用越来越重要。如何高效、准确地检测并分割交通标志成为了一个研究热点。本文将介绍一种基于Matlab的交通标志检测与分割算法,主要采用了形态学处理、膨胀、腐蚀、形状检测、颜色模型和小波滤波等知识的综合应用。
算法流程
- 读入原始图像
- 将彩色图像转换为HSV空间
- 对H通道做直方图均衡化增强对比度
- 根据交通标志的典型颜色范围设置阈值,二值化图像
- 进行形态学膨胀和腐蚀操作,消除噪声并增强标志的形状特征
- 利用regionprops函数获取连通区域的面积、周长信息,并根据先验知识筛选符合条件的标志区域
- 对符合条件的标志区域做边缘检测、霍夫变换检测圆形标志
- 进行小波滤波,将噪声进一步去除
- 输出检测结果
Matlab代码实现
% 读入原始图像
I = imread(‘traffic_sign.jpg’);
% 将彩色图像转换为HSV空间
J = rgb2hsv(I);
% 对H通道做直方图均衡化增强对比度
H = J(:,:,1);
H = histeq(H);
J(:,:,1) = H;
% 根据交通标志的典型颜色范围设置阈值,二值化图像
BW = (J(:,:,1)>0.08