大数据处理 - Map & Reduce

MapReduce是一种用于处理大数据的计算模型,通过分解任务进行并行计算,然后合并结果。它适用于数据量大但种类小的情况。基本原理包括数据划分和结果归约。常见应用包括词频统计等。面试中可能会遇到与MapReduce相关的问题,如高效统计数据的TOP10或寻找大量数的中位数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

MapReduce是一种计算模型, 本质上是 分治/hash_map/归并排序 这种方式在分布式下的延伸。

Map & Reduce简介

MapReduce是一种计算模型,简单的说就是将大批量的工作(数据)分解(MAP)执行,然后再将结果合并成最终结果(REDUCE)。这样做的好处是可以在任务被分解后,可以通过大量机器进行并行计算,减少整个操作的时间。但如果你要我再通俗点介绍,那么,说白了,Mapreduce的原理就是一个归并排序。

  • 适用范围: 数据量大,但是数据种类小可以放入内存

  • 基本原理及要点: 将数据交给不同的机器去处理,数据划分,结果归约。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

毕设王同学

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值