sql优化

  1. 写明查询具体某几列,减少*的使用,表名过长时,尽量使用表的别名

*和列名一样

2,在业务密集的SQL当中尽量不采用IN操作符,用EXISTS 方案代替。

in 和 exists的区别: 如果子查询得出的结果集记录较少,主查询中的表较大且又有索引时应该用in, 反之如果外层的主查询记录较少,子查询中的表大,又有索引时使用exists。其实我们区分in和exists主要是造成了驱动顺序的改变(这是性能变化的关键),如果是exists,那么以外层表为驱动表,先被访问,如果是IN,那么先执行子查询,所以我们会以驱动表的快速返回为目标,那么就会考虑到索引及结果集的关系了 ,另外IN时不对NULL进行处理。

in 是把外表和内表作hash 连接,而exists是对外表作loop循环,每次loop循环再对内表进行查询。一直以来认为exists比in效率高的说法是不准确的。

3、模糊查询like,尽量少用%
  关键词%yue%,由于yue前面用到了“%”,因此该查询必然走全表扫描,除非必要,否则不要在关键词前加%,

4, 二者都能使用尽量使用where (与having比较)
  where 先过滤(数据就少了)再分组
5,尽量使用多表连接(join)查询(避免子查询)

子查询效率特别低,而一般的子查询都可以由关连查询来实现相同的功能,关联查询的效率要提高很多,所以建议在数据查询时避免使用子查询(尤其是在记录很多时),而最好用关联查询来实现。

6,建立索引

较频繁地作为查询条件的字段,唯一性不太差的字段适合建立索引,更新不太频繁地字段适合创建索引,不会出现在where条件中的字段不该建立索引

7,多使用内部函数提高SQL效率

例如多用concat连接,代替’||’ 的符号连接

8,应尽量避免在 where 子句中使用 != 或 <> ,in 或 not in

最好不要给数据库留NULL,尽可能的使用 NOT NULL填充数据库 (不然会进行全表扫描,影响效率)

9,尽可能的使用 varchar/nvarchar 代替 char/nchar (节省字段存储空间)

展开阅读全文

没有更多推荐了,返回首页