- 博客(2)
- 收藏
- 关注
原创 Autonomous Emergency Landing for Multicopters using Deep Reinforcement Learning(2022IROS)
深度补全网络[ 17 ]利用RGB图像和稀疏的深度信息输出周 围环境的稠密深度图。其中Rt为步长奖励,RS与视图中的语义类相关联,RC为机器人与环境的碰撞,RA为选择的动作(离散动作空间),RT为终端奖励。文章提到了可以用语义将形如(路面/道路、地形、水、树木、建筑物和汽车)等进行分类,但是实际场景设计在城市场景,未考虑该问题。从深度补全生成的深度图中提取的平坦度或倾斜度是有噪声的,使得这些方法中有效着陆点的识别变得困难。未解决的问题:飞行高度较高时,深度补全和立体匹配都不是绝对准确的。
2023-05-17 11:56:36 262
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人