uva 1394

题意:给n个人,依次编号为1 -> n。给n, k, m。k代表每隔k个人杀一个,m代表从m号开始杀。

这一题的思维难度要大一点,首先得知道,f[n] = (f[n - 1] + k) % n,这个公式怎么来。n个人,我们从编号为0 -> n - 1。这样从0开始数,第k个人即k-1号会被杀(当然k-1得存在才行)。这样k号将变为0,编号依次递增,即编号依次减k(小于k需要从n-2开始)。这样第0号原本的编号应为,(0 + k)% n ,即k。

当留下最后一个人,即编号为0,那么我们可以倒推回去,求出它的原本编号。

注意,有n个人,只需转n-2次。因为第一个人死,不需要转。所以我们最后得处理一下,使原本从零开始的,变为从m开始。

#include<cstdio>
const int maxn = 10000 + 5;
int f[maxn];
int main()
{
    int n, k, m;
    while(scanf("%d%d%d", &n, &k, &m) == 3 && n + k + m)
    {
        f[1] = 0;
        for(int i = 2; i < n; i++)
        {
            f[i] = (f[i - 1] + k) % i;
        }
        printf("%d\n", (f[n - 1] + m) % n + 1);
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>