2019年牛客多校第一场B题 Integration 数学

本文介绍了如何使用裂项相消的方法解决一道数学积分问题,通过手动推导n=2,3的系数,最终得出式子,并利用积分公式得到答案。在比赛中,作者的队友认出了该问题的解决方式,从而快速得出结论。" 114236167,10295766,Java实现商人安全过河问题,"['Java', '算法', '问题解决']
摘要由CSDN通过智能技术生成

题目链接

传送门

思路

首先我们对 ∫ 0 ∞ 1 ∏ i = 1 n ( a i 2 + x 2 ) d x \int_{0}^{\infty}\frac{1}{\prod\limits_{i=1}^{n}(a_i^2+x^2)}dx 0i=1n(ai2+x2)1dx进行裂项相消:
1 ∏ i = 1 n ( a i 2 + x 2 ) = 1 ( a 1 2 + x 2 ) ( a 2 2 + x 2 ) × 1 ∏ i = 3 n ( a i 2 + x 2 ) = 1 a 2 2 − a 1 2 × ( 1 a 1 2 + x 2 − 1 a 2 2 + x 2 ) × 1 ∏ i = 3 n ( a i 2 + x 2 ) = 1 a 2 2 − a 1 2 × ( 1 a 1 2 + x 2 × 1 a 3 2 + x 2 − 1 a 2 2 + x 2 × 1 a 3 2 + x 2 ) × 1 ∏ i = 4 n ( a i 2 + x 2 ) = … \begin{aligned} &\frac{1}{\prod\limits_{i=1}^{n}(a_i^2+x^2)}&\\ =&\frac{1}{(a_1^2+x^2)(a_2^2+x^2)}\times\frac{1}{\prod\limits_{i=3}^{n}(a_i^2+x^2)}&\\ =&\frac{1}{a_2^2-a_1^2}\times(\frac{1}{a_1^2+x^2}-\frac{1}{a_2^2+x^2})\times\frac{1}{\prod\limits_{i=3}^{n}(a_i^2+x^2)}&\\ =&\frac{1}{a_2^2-a_1^2}\times(\frac{1}{a_1^2+x^2}\times\frac{1}{a_3^2+x^2}-\frac{1}{a_2^2+x^2}\times\frac{1}{a_3^2+x^2})\times\frac{1}{\prod\limits_{i=4}^{n}(a_i^2+x^2)}&\\ =&\dots& \end{aligned} ====i=1n(ai2+x2)1(a12+x2)(a22+x2)1×i=3n(ai2

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值