题目链接
思路
首先我们对 ∫ 0 ∞ 1 ∏ i = 1 n ( a i 2 + x 2 ) d x \int_{0}^{\infty}\frac{1}{\prod\limits_{i=1}^{n}(a_i^2+x^2)}dx ∫0∞i=1∏n(ai2+x2)1dx进行裂项相消:
1 ∏ i = 1 n ( a i 2 + x 2 ) = 1 ( a 1 2 + x 2 ) ( a 2 2 + x 2 ) × 1 ∏ i = 3 n ( a i 2 + x 2 ) = 1 a 2 2 − a 1 2 × ( 1 a 1 2 + x 2 − 1 a 2 2 + x 2 ) × 1 ∏ i = 3 n ( a i 2 + x 2 ) = 1 a 2 2 − a 1 2 × ( 1 a 1 2 + x 2 × 1 a 3 2 + x 2 − 1 a 2 2 + x 2 × 1 a 3 2 + x 2 ) × 1 ∏ i = 4 n ( a i 2 + x 2 ) = … \begin{aligned} &\frac{1}{\prod\limits_{i=1}^{n}(a_i^2+x^2)}&\\ =&\frac{1}{(a_1^2+x^2)(a_2^2+x^2)}\times\frac{1}{\prod\limits_{i=3}^{n}(a_i^2+x^2)}&\\ =&\frac{1}{a_2^2-a_1^2}\times(\frac{1}{a_1^2+x^2}-\frac{1}{a_2^2+x^2})\times\frac{1}{\prod\limits_{i=3}^{n}(a_i^2+x^2)}&\\ =&\frac{1}{a_2^2-a_1^2}\times(\frac{1}{a_1^2+x^2}\times\frac{1}{a_3^2+x^2}-\frac{1}{a_2^2+x^2}\times\frac{1}{a_3^2+x^2})\times\frac{1}{\prod\limits_{i=4}^{n}(a_i^2+x^2)}&\\ =&\dots& \end{aligned} ====i=1∏n(ai2+x2)1(a12+x2)(a22+x2)1×i=3∏n(ai2