哈希表
1、数组
2、set
3、map
4、使用条件:当判断一个元素是否出现过,或是否在一个集合里时。
242.有效的字母异位词
1、使用s[i] - 'a’求取相对位置
//时间复杂度:O(n)
//空间复杂度:O(1)
class Solution {
public:
bool isAnagram(string s, string t) {
int record[26] = {0};
for (int i = 0; i < s.size(); i++) {
// 并不需要记住字符a的ASCII,只要求出一个相对数值就可以了
record[s[i] - 'a']++;
}
for (int i = 0; i < t.size(); i++) {
record[t[i] - 'a']--;
}
for (int i = 0; i < 26; i++) {
if (record[i] != 0) {
// record数组如果有的元素不为零0,说明字符串s和t 一定是谁多了字符或者谁少了字符。
return false;
}
}
// record数组所有元素都为零0,说明字符串s和t是字母异位词
return true;
}
};
349. 两个数组的交集
1、注意set的定义,数据初始化 和 find方法的使用
//时间复杂度:O(mn)
//空间复杂度:O(n)
class Solution {
public:
vector<int> intersection(vector<int>& nums1, vector<int>& nums2) {
unordered_set<int> result_set; // 存放结果,之所以用set是为了给结果集去重
unordered_set<int> nums_set(nums1.begin(), nums1.end());
for (int num : nums2) {
// 发现nums2的元素 在nums_set里又出现过
if (nums_set.find(num) != nums_set.end()) {
result_set.insert(num);
}
}
return vector<int>(result_set.begin(), result_set.end());
}
};
202. 快乐数
1、题目中说sum会无限循环,所以找到重复的sum即判断不是快乐数
//时间复杂度:O(logn)
//空间复杂度:O(logn)
class Solution {
public:
// 取数值各个位上的单数之和
int getSum(int n) {
int sum = 0;
while (n) {
sum += (n % 10) * (n % 10);
n /= 10;
}
return sum;
}
bool isHappy(int n) {
unordered_set<int> set;
while(1) {
int sum = getSum(n);
if (sum == 1) {
return true;
}
// 如果这个sum曾经出现过,说明已经陷入了无限循环了,立刻return false
if (set.find(sum) != set.end()) {
return false;
} else {
set.insert(sum);
}
n = sum;
}
}
};
1. 两数之和
1、因为既需要值,又需要下标,所以用map,key存值,value存下标
2、注意map和迭代器的定义和使用
//时间复杂度:O(n)
//空间复杂度:O(n)
class Solution {
public:
vector<int> twoSum(vector<int>& nums, int target) {
std::unordered_map <int,int> map;
for(int i = 0; i < nums.size(); i++) {
// 遍历当前元素,并在map中寻找是否有匹配的key
auto iter = map.find(target - nums[i]);
if(iter != map.end()) {
return {iter->second, i};
}
// 如果没找到匹配对,就把访问过的元素和下标加入到map中
map.insert(pair<int, int>(nums[i], i));
}
return {};
}
};