2041 超级楼梯

版权声明:本文为博主原创文章,转载望备明出处,谢谢! https://blog.csdn.net/Dina_p/article/details/78568800

超级楼梯

Problem Description

有一楼梯共M级,刚开始时你在第一级,若每次只能跨上一级或二级,要走上第M级,共有多少种走法? 

 

Input

输入数据首先包含一个整数N,表示测试实例的个数,然后是N行数据,每行包含一个整数M(1<=M<=40),表示楼梯的级数。 

 

Output

对于每个测试实例,请输出不同走法的数量 

 

Sample Input


 

2 2 3

 

Sample Output


 

1 2

 

     分析:

     从 1 级到 2 级,有 1 种走法;

     从 1 级到 3 级,有 2 种走法 (1、1; 2);

     从 1 级到 4 级,有 3 种走法(1、1、1; 1、2; 2、1);

     从 1 级到 5 级,有 5 种走法(1、1、1、1; 1、1、2 1、2、1; 2、1、1; 2、2);

     从 1 级到 6 级,有 8 种走法(1、1、1、1、1;1、1、1、2 1、1、2、1;1、2、1、1

                                                         2、1、1、1;1、2、2;2、1、2;2、2、1);

 

    可总结出一条公式 : DP(n)=DP(n-1)+DP(n-3) (n>2)

     参考代码:

package DP;
import java.util.Scanner;

public class SuperStaircase {
	public static void main(String[] args) {
		Scanner sc=new Scanner(System.in);
	    int N=sc.nextInt();	   
	    int[] DP=new int[40];
	    DP[1]=1;
	    DP[2]=1;	   
	    for (int i = 3; i < 40; i++) {
			DP[i]=DP[i-1]+DP[i-2];
		}
	    for(int i=0;i<N;i++){
	    	int a=sc.nextInt();
	    	System.out.println(DP[a]);
	    }
	   sc.close();
	}
}

 

    

 

展开阅读全文

没有更多推荐了,返回首页