_cpp 布隆过滤器

0. 前言

  • 上一章我们了解并简单模拟实现了位图bitset
  • 链接:_cpp 位图

1. 布隆过滤器提出

  • 我们在使用新闻客户端看新闻时,它会给我们不停地推荐新的内容,**它每次推荐时要去重,去掉那些已经看过的内容。**问题来了,新闻客户端推荐系统如何实现推送去重的? 用服务器记录了用户看过的所有历史记录,当推荐系统推荐新闻时会从每个用户的历史记录里进行筛选,过滤掉那些已经存在的记录。 如何快速查找呢?
  1. 用哈希表存储用户记录,缺点:浪费空间。
  2. 用位图存储用户记录,缺点:位图一般只能处理整形,如果内容编号是字符串,就无法处理了。
  3. 将哈希与位图结合,即布隆过滤器。

2. 布隆过滤器概念

  • 布隆过滤器是由布隆(Burton Howard Bloom)在1970年提出的 一种紧凑型的、比较巧妙的概率型数据结构,特点是高效地插入和查询,可以用来告诉你 “某样东西一定不存在或者可能存在”,它是用多个哈希函数,将一个数据映射到位图结构中。此种方式不仅可以提升查询效率,也可以节省大量的内存空间。

    在这里插入图片描述

  • 推荐一篇文章:知乎

在这里插入图片描述

3. 具体实现代码

注意:网上都有相关公式
在这里插入图片描述

struct HashBKDR
{
	// BKDR
	size_t operator()(const string& key)
	{
		size_t val = 0;
		for (auto ch : key)
		{
			val *= 131;
			val += ch;
		}

		return val;
	}
};

struct HashAP
{
	// BKDR
	size_t operator()(const string& key)
	{
		size_t hash = 0;
		for (size_t i = 0; i < key.size(); i++)
		{
			if ((i & 1) == 0)
			{
				hash ^= ((hash << 7) ^ key[i] ^ (hash >> 3));
			}
			else
			{
				hash ^= (~((hash << 11) ^ key[i] ^ (hash >> 5)));
			}
		}
		return hash;
	}
};

struct HashDJB
{
	// BKDR
	size_t operator()(const string& key)
	{
		size_t hash = 5381;
		for (auto ch : key)
		{
			hash += (hash << 5) + ch;
		}

		return hash;
	}
};

// N表示准备要映射N个值
template<size_t N,
class K = string, class Hash1 = HashBKDR, class Hash2 = HashAP, class Hash3 = HashDJB>
class BloomFilter
{
public:
	void Set(const K& key)
	{
		size_t hash1 = Hash1()(key) % (_ratio * N);
		_bits.set(hash1);

		size_t hash2 = Hash2()(key) % (_ratio * N);
		_bits.set(hash2);

		size_t hash3 = Hash3()(key) % (_ratio * N);
		_bits.set(hash3);

	}

	bool Test(const K& key)
	{
		size_t hash1 = Hash1()(key) % (_ratio * N);
		if (!_bits.test(hash1))
			return false; // 准确的

		size_t hash2 = Hash2()(key) % (_ratio * N);
		if (!_bits.test(hash2))
			return false; // 准确的

		size_t hash3 = Hash3()(key) % (_ratio * N);
		if (!_bits.test(hash3))
			return false;  // 准确的

		return true; // 可能存在误判
	}
private:
	const static size_t _ratio = 5;
	bitset<_ratio* N> _bits;
};

4. 测试代码

void TestBloomFilter1()
{
	BloomFilter<10> bf;
	string arr1[] = { "苹果", "西瓜", "阿里", "美团", "苹果", "字节", "西瓜", "苹果", "香蕉", "苹果", "腾讯" };

	for (auto& str : arr1)
	{
		bf.Set(str);
	}

	for (auto& str : arr1)
	{
		cout << bf.Test(str) << endl;
	}
	cout << endl << endl;

	string arr2[] = { "苹果111", "西瓜", "阿里2222", "美团", "苹果dadcaddxadx", "字节", "西瓜sSSSX", "苹果 ", "香蕉", "苹果$", "腾讯" };

	for (auto& str : arr2)
	{
		cout << str << ":" << bf.Test(str) << endl;
	}
}

void TestBloomFilter2()
{
	srand(time(0));
	const size_t N = 100000;
	BloomFilter<N> bf;
	cout << sizeof(bf) << endl;

	std::vector<std::string> v1;
	std::string url = "https://www.cnblogs.com/-clq/archive/2012/05/31/2528153.html";

	for (size_t i = 0; i < N; ++i)
	{
		v1.push_back(url + std::to_string(1234 + i));
	}

	for (auto& str : v1)
	{
		bf.Set(str);
	}

	// 相似
	std::vector<std::string> v2;
	for (size_t i = 0; i < N; ++i)
	{
		std::string url = "http://www.cnblogs.com/-clq/archive/2021/05/31/2528153.html";
		url += std::to_string(rand() + i);
		v2.push_back(url);
	}

	size_t n2 = 0;
	for (auto& str : v2)
	{
		if (bf.Test(str))
		{
			++n2;
		}
	}
	cout << "相似字符串误判率:" << (double)n2 / (double)N << endl;

	std::vector<std::string> v3;
	for (size_t i = 0; i < N; ++i)
	{
		string url = "zhihu.com";
		url += std::to_string(rand() + i);
		v3.push_back(url);
	}

	size_t n3 = 0;
	for (auto& str : v3)
	{
		if (bf.Test(str))
		{
			++n3;
		}
	}
	cout << "不相似字符串误判率:" << (double)n3 / (double)N << endl;
}

5. 结果展示

在这里插入图片描述

布隆过滤器相关应用

  1. 给两个文件,分别有100亿个query,我们只有1G内存,如何找到两个文件交集?分别给出精确算法和近似算法。

思路:通过哈希切分分为一个一个小文件;最后通过set去重并查找文件即可。
在这里插入图片描述

  1. 如何扩展BloomFilter使得它支持删除元素的操作
  • 布隆过滤器不能直接支持删除工作,因为在删除一个元素时,可能会影响其他元素。
  • 一种支持删除的方法:将布隆过滤器中的每个比特位扩展成一个小的计数器,插入元素时给k个计数器(k个哈希函数计算出的哈希地址)加一,删除元素时,给k个计数器减一,通过多占用几倍存储空间的代价来增加删除操作。
  1. 给一个超过100G大小的log file, log中存着IP地址, 设计算法找到出现次数最多的IP地址?与上题条件相同,如何找到top K的IP?
    思路:通过哈希切分后,通过map(pair<K, V>)计数;通过小堆方法(取前十个)一个一个小文件找到次数最多的IP地址。

在这里插入图片描述

6. 布隆过滤器优点

  1. 增加和查询元素的时间复杂度为:O(K), (K为哈希函数的个数,一般比较小),与数据量大小无
  2. 哈希函数相互之间没有关系,方便硬件并行运算
  3. 布隆过滤器不需要存储元素本身,在某些对保密要求比较严格的场合有很大优势
  4. 在能够承受一定的误判时,布隆过滤器比其他数据结构有这很大的空间优势
  5. 数据量很大时,布隆过滤器可以表示全集,其他数据结构不能
  6. 使用同一组散列函数的布隆过滤器可以进行交、并、差运算

7. 布隆过滤器缺陷

  1. 有误判率,即存在假阳性(False Position),即不能准确判断元素是否在集合中(补救方法:再
    建立一个白名单,存储可能会误判的数据)
  2. 不能获取元素本身
  3. 一般情况下不能从布隆过滤器中删除元素
  4. 如果采用计数方式删除,可能会存在计数回绕问题
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

昨天;明天。今天。

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值