Python算法题

判断一个字符串S是否由其他两个字符串A, B混合而成。(混合时字符顺序不变)
即A,B随机切分之后的子串,随机混合在一起成为S,但是子串在S中的相对顺序要跟在原来在A,B中的顺序保持一致。
如果S是由A,B混合而成,输出True。否则,输出False

例如:
A: “chdkeold”
B: “jgkhqp”
S: “chdjkgkheqopld”
输出: True

A: “aebc”
B: “axbd”
S: “axaebdbc”
输出: True

A: “aac”
B: “bba”
S: “aabcab”
输出:False

def is_mixed(a, b, s):
    if len(a) + len(b) != len(s):
        return False 
    if len(a) == 0:
        return s == b 
    elif len(b) == 0:
        return s == a 
    else:
        result = False
        if a[0] == s[0]:
            result = is_mixed(a[1:], b, s[1:])
        if b[0] == s[0]:
            result = is_mixed(a, b[1:], s[1:])
        return result
        
res = is_mixed("aac", "bba", "aabcab")
# res = is_mixed("aebc", "axbd", "axaebdbc")
print(res)
### Python 算法题练习示例 以下是几个经典的 Python 算法题目及其解决方案: #### 题目一:实现一个递归函数来计算一个数的阶乘 通过递归方法,可以轻松解决阶乘问题。这是一个基础算法题,用于理解递归的概念。 ```python def factorial(n): if n == 0 or n == 1: return 1 else: return n * factorial(n - 1) print(factorial(5)) # 输出应为 120 ``` 此代码展示了如何利用递归来解决问题[^2]。 --- #### 题目二:滑动窗口最大值 给定一个数组 `nums` 和一个整数 `k`,找到所有长度为 `k` 的子数组的最大值并返回这些最大值组的列表。 ```python from collections import deque def max_sliding_window(nums, k): result = [] q = deque() for i in range(len(nums)): while q and nums[i] >= nums[q[-1]]: q.pop() q.append(i) if i - q[0] >= k: q.popleft() if i + 1 >= k: result.append(nums[q[0]]) return result # 测试用例 nums = [1, 3, -1, -3, 5, 3, 6, 7] k = 3 print(max_sliding_window(nums, k)) # 输出应为 [3, 3, 5, 5, 6, 7] ``` 这段代码实现了滑动窗口算法的核心逻辑,并适用于多种场景中的最优化求解[^3]。 --- #### 题目三:快速排序 (Quick Sort) 快速排序是一种分治策略的经典应用案例,在许多编程竞赛中经常被考察到其变体形式。 ```python def quick_sort(arr): if len(arr) <= 1: return arr else: pivot = arr[len(arr) // 2] left = [x for x in arr if x < pivot] middle = [x for x in arr if x == pivot] right = [x for x in arr if x > pivot] return quick_sort(left) + middle + quick_sort(right) # 测试用例 arr = [3, 6, 8, 10, 1, 2, 1] print(quick_sort(arr)) # 输出应为 [1, 1, 2, 3, 6, 8, 10] ``` 上述代码提供了快速排序的一个简洁版本,便于理解和学习[^1]。 --- #### 题目四:斐波那契数列(动态规划) 编写一个程序,使用动态规划的方法生第 N 项斐波那契数。 ```python def fibonacci(n): dp = [0, 1] for i in range(2, n + 1): dp.append(dp[i - 1] + dp[i - 2]) return dp[n] # 测试用例 n = 9 print(fibonacci(n)) # 输出应为 34 ``` 该例子说明了动态规划的思想以及其实现方式。 --- ### 总结 以上四个题目涵盖了递归、滑动窗口、快速排序和动态规划等多个重要领域的内容。它们不仅有助于提高编码能力,还能帮助深入理解各种经典算法的工作原理。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值