题目描述:给定一个数组A[0,1,...,n-1],请构建一个数组B[0,1,...,n-1],其中B中的元素B[i]=A[0]*A[1]*...*A[i-1]*A[i+1]*...*A[n-1]。不能使用除法。
思路一:
B[i]的值可以看作矩阵中每行的乘积。
先计算下三角中的连乘,即我们先算出B[i]中的一部分,然后倒过来按上三角中的分布规律,把另一部分也乘进去。
import java.util.ArrayList;
public class Solution {
public int[] multiply(int[] A) {
int[] B = new int[A.length];
B[0] = 1;
for (int i = 1; i < A.length; i++)
B[i] = B[i - 1] * A[i - 1];
int tmp = 1;
for (int i = A.length - 2; i >= 0; i--)
{
tmp *= A[i + 1];
B[i] *= tmp;
}
return B;
}
}
思路二:
B[i]=A[0]*A[1]*...*A[i-1]*A[i+1]*...*A[n-1]
从左到右算 B[i]=A[0]*A[1]*...*A[i-1]
从右到左算B[i]*=A[i+1]*...*A[n-1]
import java.util.ArrayList;
public class Solution {
public int[] multiply(int[] A) {
int[] B = new int[A.length];
int res = 1;
for (int i = 0; i < A.length; res *= A[i++])
B[i] = res;
res = 1;
for (int i = A.length - 1; i >= 0; res *= A[i--])
B[i] *= res;
return B;
}
}