前缀和——DP35 【模板】二维前缀和

48 篇文章 1 订阅

在这里插入图片描述

🍎1. 题目

题目链接:【模板】二维前缀和_牛客题霸_牛客网 (nowcoder.com)

描述

给你一个 n 行 m 列的矩阵 A ,下标从1开始。

接下来有 q 次查询,每次查询输入 4 个参数 x1 , y1 , x2 , y2

请输出以 (x1, y1) 为左上角 , (x2,y2) 为右下角的子矩阵的和,

输入描述:

第一行包含三个整数n,m,q.

接下来n行,每行m个整数,代表矩阵的元素

接下来q行,每行4个整数x1, y1, x2, y2,分别代表这次查询的参数

1 ≤ n ≤ 1000
1 ≤ q ≤ 105
-109 ≤ a[i] [j] ≤ 109
1 ≤ x1 ≤ x2 ≤ n
1 ≤ y1 ≤ y2 ≤ m

输出描述:

输出q行,每行表示查询结果。

示例1

输入:

3 4 3
1 2 3 4
3 2 1 0
1 5 7 8
1 1 2 2
1 1 3 3
1 2 3 4

输出:

8
25
32

备注:

读入数据可能很大,请注意读写时间。

这题就是一个升级版的前缀和——DP34 【模板】前缀和,将一维数组升级成了二维数组

image-20231122214754624

🍒2. 算法原理

解法一:暴力模拟

这里照样直接模拟,要哪个区间到哪个区间,我们直接遍历加上,这里时间复杂度为O(nmq)

解法二:前缀和

采用前缀和方法,分为2步:

  1. 预处理出来一个前缀和矩阵,dp[i][j]表示[1,1]位置到[i,j]位置
    image-20231122230806157
    如果我们求dp[i][j]的时候依旧从前往后依次遍历,那这个时间复杂度也是蛮高的,我们可以将要求的dp[i][j]抽象成4个部分:
    image-20231122232002954
    那么则有dp[i][j] = A + B + C + D,其中A和D好求,B区域可以理解为(A+B)-A,C也同理(A+C)-A,这样就能推出dp[i][j] = (A+B)+(A+C)+D-A

    所以dp[i][j] = dp[i-1][j] + dp[i][j-1] + arr[i][j] - dp[i-1][j-1],这样之后我们就可以直接从dp表里面拿值了,这个时间复杂度为O(1)

  2. 使用前缀和矩阵,假设我们求得区域为[x1,y1] ~ [x2,y2]
    image-20231122233348002
    我们要求的就是D区域,但是dp表里面,没有D区域的直接值,但D = (A+B+C+D) - (A+B) - (A+C) + A,表里面有AA+BA+C的值,所以D = dp[x2][y2] -dp[x1-1][y2] - dp[x2][y1-1] + dp[x1-1][y1-1],得出这个公式,那我们每次使用这个前缀和矩阵的时候,时间复杂度也是O(1)。

那么整体的时间复杂度为O(mn)+O(q)

🍅3. 代码实现

#include <iostream>
#include<vector>
using namespace std;

int main()
{
    int n = 0,m = 0,q = 0;
    cin>>n>>m>>q;
    vector<vector<int>> arr(n+1,vector<int>(m+1));
    for(int i=1;i<=n;i++)
        for(int j=1;j<=m;j++)
            cin>>arr[i][j];
    

    //预处理前缀和矩阵
    vector<vector<long long>> dp(n+1,vector<long long>(m+1));
    for(int i=1;i<=n;i++)
        for(int j=1;j<=m;j++)
            dp[i][j]=dp[i-1][j]+dp[i][j-1]+arr[i][j]-dp[i-1][j-1];
    
    //使用前缀和矩阵
    int x1 = 0,x2 = 0,y1 = 0, y2 = 0;
    while(q--)
    {
        cin>>x1>>y1>>x2>>y2;    //输入顺序
        cout<<dp[x2][y2]-dp[x1-1][y2]-dp[x2][y1-1]+dp[x1-1][y1-1]<<endl;
    }
    return 0 ;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

加法器+

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值