快速排序由于排序效率在同为 O(N*logN)的几种排序方法中效率较高,因此经常被采用,再加上快速排序思想——分治法也确实非常实用, 因此很多软件公司的笔试面试,包括像腾讯,微软等知名 IT 公司都喜欢考这个, 还有大大小的程序方面的考试如软考,考研中也常常出现快速排序的身影。
快速排序是 C.R.A.Hoare 于 1962 年提出的一种划分交换排序。它采用了一种分治的策略,通常称其为分治法
(Divide-and-ConquerMethod)。
该方法的基本思想是:
1. 先从数列中取出一个数作为基准数。
2. 分区过程,将比这个数大的数全放到它的右边,小于或等于它的数全放到它的左边。
3. 再对左右区间重复第二步,直到各区间只有一个数。
虽然快速排序称为分治法,但分治法这三个字显然无法很好的概括快速排序的全部步骤。因此我的对快速排序作了进一步的说明: 挖坑填数
+分治法
:
先来看实例吧,定义下面再给出(最好能用自己的话来总结定义,这样对实现代码会有帮助)。
内部排序应尽量避免比较多的元素交换操作,因此下面的分析和代码的实现中,我们并不是采取交换操作,而是先将基准元素保存在x变量中,然后每次遇到需要交换的元素时,先将该元素赋给x所在的位置,而后再将该元素所在位置“挖空”,之后的每一次比较,就用需要交换的元素来填充上次“挖空”的位置,同时将交换过来的元素所在的位置再“挖空”,以等待下次填充。
照着这个总结很容易实现挖坑填数的代码:
//返回调整后基准数的位置
public int AdjustArray(int arr[],int left,int right) {
int i = left,j = right;
//arr[left]就是第一个基准数(坑)
int x = arr[left];
//i=j时说明一趟已经遍历完
while(i<j) {
//从右往左找小于基准数x的数来填arr[i]
while(i<j&&arr[j]>=x) {
j--;
}
if(i<j) {
arr[i] = arr[j];
i++;
}
//从左往右找大于或者等于基准数x的数来填arr[j]
while(i<j&&arr[i]<x) {
i++;
}
if(i<j) {
arr[j] = arr[i];
j--;
}
}
//退出时i=j,将基准数x填入这个坑中
arr[i] = x;
return i;
}
再写分治法的代码:
//分治:递归实现
public void quicksort1(int arr[],int left,int right) {
if(left<right) {
int i = AdjustArray(arr, left, right);
//递归调用
quicksort1(arr,left,i-1);
quicksort1(arr,i+1,right);
}
}
这样的代码显然不够简洁,对其组合整理下:
//快排简洁版
public void quicksort2(int arr[],int left,int right) {
if(left<right) {
int i = left,j = right,x=arr[left];
//从右往左找小于基准数x的数来填arr[i]
while(i<j&&arr[j]>=x) {
j--;
}
if(i<j) {
arr[i++] = arr[j];
}
//从左往右找大于或者等于基准数x的数来填arr[j]
while(i<j&&arr[i]<x) {
i++;
}
if(i<j) {
arr[j--] = arr[i];
}
arr[i] = x;
//递归调用左边
quicksort2(arr, left, i-1);
//递归调用右边
quicksort2(arr,i+1,right);
}
}
注意:
- 快速排序还有很多改进版本,如随机选择基准数,区间内数据较少时直接用另的方法排序以减小递归深度。有兴趣的筒子可以再深入的研究下。有的书上是以中间的数作为基准数的,要实现这个方便非常方便,直接将中间的数和第一个数进行交换就可以了。