题目
我们可以用2 * 1的小矩形横着或者竖着去覆盖更大的矩形。请问用n个2 * 1的小矩形无重叠地覆盖一个2 * n的大矩形,总共有多少种方法?
思路
当n=1,f(n)=1
当n=2,f(n)=2
当n>2时,当第一个小矩形横着放时,摆法有f(n−1)
当第一个小矩形竖着放时,摆法有f(n−2)
f(n)=f(n−1)+f(n−2)
/**
* 用递归的方法
*/
public int RectCover(int target) {
int sum;
if (target < 1) {
return 0;
} else if (target == 1) {
return 1;
} else if (target == 2) {
return 2;
} else {
sum = RectCover(target - 1) + RectCover(target - 2);
return sum;
}
}
/**
* 迭代的方法
*/
public int RectCover_2(int target) {
int a = 1, b = 2, c = 0;
if (target < 1) {
return 0;
} else if (target <= 2) {
return target;
} else {
for (int i = 0; i < target - 2; i++) {
c = a + b;
a = b;
b = c;
}
return c;
}
}